
Institute for
Software Technology

Fachbereich 4: Informatik Institut für Softwaretechnik

Development of a Glossary System for Artifacts
of the Requirements Engineering

Bachelorarbeit
zur Erlangung des Grades Bachelor of Science (B.Sc.)

im Studiengang Wirtschaftsinformatik

vorgelegt von

Michael Merz

www.telekobold.de

Erstgutachter: Dr. Volker Riediger
Institut für Softwaretechnik

Zweitgutachterin: M.Sc. Katharina Großer
Institut für Softwaretechnik

Koblenz, im Januar 2020

www.telekobold.de

Note

This document differs from the version issued in January 2020 in that my matriculation number
has been replaced by a link to my personal homepage.

Hinweis

Dieses Dokument unterscheidet sich von der im Januar 2020 abgegebenen Version dadurch,
dass meine Matrikelnummer durch einen Link zu meiner privaten Homepage ersetzt wurde.

iii

iv

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

. .

(Ort, Datum) (Unterschrift)

v

vi

Kurzfassung

Im Rahmen der Anforderungserhebung im Requirements Engineering sowie in Softwarepro-
jekten werden häufig Glossare erstellt, um projektspezifische Begriffe und ihre Definitionen zu
hinterlegen. Solche Glossare werden dann als Nachschlagewerke verwendet, sobald beim Le-
sen eines projektspezifischen Artefaktes (z.B. einer Anforderung oder einer Dokumentation)
Unklarheit über die Bedeutung eines Begriffes auftritt.

Solche Glossare sind jedoch häufig nur als Begriff-Definitions-Listen realisiert. Dies hat mehre-
re Nachteile: Homonyme (Begriffe mit mehreren Bedeutungen) und Synonyme (Begriffe, die in
ihrer Bedeutung übereinstimmen), welche beispielsweise in Anforderungen verwendet wer-
den, können zu Missverständnissen und Inkonsistenzen führen. Beispielsweise kann es sich
bei dem Term bug entweder um einen Programmfehler, um ein verstecktes Mikrofon oder um
ein Insekt handeln. Homonyme und Synonyme lassen sich in als Begriff-Definitions-Listen rea-
lisierten Glossaren jedoch nur schwer darstellen. Zudem ist es mit solchen Glossaren nicht oder
nur unleserlich durch textuelle Anmerkungen möglich, für das Verständnis nützliche Relatio-
nen zwischen Begriffen und ihren Definitionen darzustellen, wie beispielsweise Teil-Ganzes-
Beziehungen (z.B. zwischen Stuhl und Stuhlbein). Außerdem werden thematische Bezüge zwi-
schen Begriffen und ihren Definitionen häufig streng hierarchisch mithilfe von Überschriften
dargestellt und kategorisiert. Solche Überschriften zerstören aber eine einheitliche, alphanu-
merische Sortierung von Begriffen, welche in den meisten Glossaren zur einfacheren Auffind-
barkeit verwendet wird. Diese Probleme erschweren die Erstellung, Nutzbarkeit und Pflege
von projektspezifischen Glossaren.

Um die genannten Probleme zu verbessern, wurde im Rahmen dieser Arbeit auf Grundlage
von Literaturrecherchen in den Bereichen Requirements Engineering, Linguistik und Controlled
Vocabulary- und Thesaurus-Standards ein Metamodell entwickelt, das sogenannte GlossarySche-
ma. Das GlossarySchema ist als UML-Klassendiagramm realisiert und definiert eine formale
Struktur für Glossare für das Requirements Engineering. Mithilfe des GlossarySchemas lassen
sich explizit und eindeutig viele nützliche Eigenschaften von Begriffen und Definitionen sowie
nützliche Relationen zwischen Begriffen und ihren Definitionen darstellen.

Ein komplett neuer Ansatz des entwickelten GlossarySchemas ist die Möglichkeit, Kontexte
zu definieren und zu verwenden. Kontexte sind Gruppierungen von im GlossarySchema als
Konzepten abstrahierten Begriffs-Definitionen und anderen Kontexten und ermöglichen eine
formale und flexible thematische Gruppierung von Begriffs-Definitionen, welche wesentlich
flexibler verwendbar ist als Überschriften.

Zudem wurde das sogenannte GlossarySystem entwickelt, ein in der Programmiersprache Java
geschriebenes Programm, welches das Erstellen, Editieren und Suchen von auf dem Glossa-
rySchema basierenden Glossaren ermöglicht. Das GlossarySystem stellt seine Funktionaliäten
für externe Systeme über eine Programmierschnittstelle zur Verfügung.

Ziel des GlossarySchemas bzw. des GlossarySystems ist die Erstellung von Glossaren von einer
höheren Qualität, welche einfacher und projektübergreifend verwendet und gewartet werden
können.

vii

Abstract

In the context of requirements engineering and software projects, glossaries of terms are often
created to store project-specific terms and their definitions. Such glossaries are then used as
reference works when the meaning of a term becomes unclear when reading a project-specific
artifact (e.g. a requirement or documentation).

However, such glossaries are often only realized as term-definition lists. This has several disad-
vantages: Homonyms (terms with several meanings) and synonyms (terms that have the same
meaning), which are used in requirements, for example, can lead to misunderstandings and
inconsistencies. For example, the term bug can be either a programming bug, a hidden micro-
phone or an insect. However, homonyms and synonyms are difficult to represent in glossaries
realized as term definition lists. Moreover, with such glossaries it is not possible, or only il-
legibly through textual annotations, to represent relations between terms and their definitions
that are useful for understanding, such as part-whole relations (e.g. between chair and chair
leg). Furthermore, thematic references between terms and their definitions are often represented
and categorized in a strictly hierarchical manner using headings. However, such headings
destroy a uniform, alphanumeric sorting of terms, which is used in most glossaries for easier
retrieval. These problems complicate the creation, usability and maintenance of project-specific
glossaries.

In order to improve the problems mentioned above, a metamodel, the so-called GlossarySchema,
was developed within the scope of this thesis on the basis of literature research in the fields of
requirements engineering, linguistics and controlled vocabulary and thesaurus standards. The Glos-
sarySchema is implemented as a UML class diagram and defines a formal structure for glos-
saries for the requirements engineering. With the help of the GlossarySchema many useful
properties of terms and definitions as well as useful relations between terms and their defini-
tions can be represented explicitly and unambiguously.

A completely new approach of the developed GlossarySchema is the possibility to define and
use contexts. Contexts are groupings of term definitions abstracted as concepts in the Glos-
sarySchema and other contexts and allow a formal and flexible thematic grouping of term def-
initions, which can be used much more flexibly than headings.

In addition, the so-called GlossarySystem was developed, a program written in the Java pro-
gramming language that enables the creation, editing and searching of glossaries based on the
GlossarySchema. The GlossarySystem makes its functionalities available to external systems
via an application programming interface (API).

The objective of the GlossarySchema and the GlossarySystem is to create glossaries of higher
quality that are easier to use and maintain across projects.

viii

Contents

1 Introduction and problem description 1

1.1 Problems with current glossaries . 1

1.2 Short analysis of glossaries of ESA System Requirements Documents (SRDs) . . . 2

1.3 Research Questions . 3

1.4 System Vision . 4

1.4.1 Problems with current glossaries of terms 4

1.4.2 Solutions provided by the system to be developed 5

2 Basics 7

2.1 Theoretical background to glossaries . 7

2.2 JGraLab . 7

2.3 TGraphs . 8

2.4 WordNet . 8

2.5 JGraLab WordNet Library (JGWNL) . 8

3 The GlossarySchema 9

3.1 Terms and Concepts . 11

3.2 Concept properties that are no self-relations . 14

3.3 Relations between Concepts . 16

3.4 Properties for both Concepts and Terms . 19

3.5 Properties for Terms . 21

3.6 Contexts . 24

3.7 Further aspects of the GlossarySchema . 29

3.8 Related work for GlossarySchema elements . 31

ix

4 The GlossarySystem 33

4.1 Use Cases . 33

4.1.1 Use Cases for the role User . 33

4.1.2 Use Cases for the role Editor . 37

4.2 Implementation of the GlossarySystem . 40

4.2.1 Description of the architecture of the GlossarySystem 40

4.2.2 Description of the methods provided by the GlossaryAPI 43

4.3 The Prototypical GlossarySearcher . 48

4.4 Future work for the GlossarySystem . 48

4.4.1 The integration of the WordNet . 48

4.4.2 Future work regarding the GlossaryAPI . 48

4.4.3 Future work regarding other system components 51

4.4.4 Future work regarding the Prototypical GlossarySearcher 52

4.5 Recommendations regarding the usage of the GlossarySystem 52

4.6 Further remarks on the GlossarySystem . 53

5 Conclusion 55

A Textual Glossary 57

B List of requirements to the GlossarySystem 63

B.1 Requirements to the UserAPI . 63

B.1.1 Requirements regarding the use case Search Concept 63

B.1.2 Requirements regarding the use case Set Current Context 65

B.1.3 Further requirements to the UserAPI . 65

B.2 Requirements to the EditorAPI . 65

B.2.1 Requirements regarding the use cases Manage Concept and Manage Context 65

B.2.2 Futher requirements to the EditorAPI . 67

C Fulfillment of the constraints of the GlossarySchema in the GlossarySystem 69

D Test Case Glossaries 71

Bibliography 77

x

List of Figures

3.1 The GlossarySchema . 10

3.2 GlossarySchema excerpt: Term and Concept . 12

3.3 Homonymy example . 13

3.4 Synonymy example . 13

3.5 GlossarySchema excerpt: Concept and its self-relations 15

3.6 Example for a term string that is inside a definition of a Concept 16

3.7 Example for a Concept that is part of multiple wholes 17

3.8 GlossarySchema excerpt: Element (superclass of Concept and Term) 19

3.9 The different possible statuses of Elements (Terms and Concepts) and their
possible changes . 21

3.10 GlossarySchema excerpt: Term . 22

3.11 GlossarySchema excerpt: Context and Concept 25

3.12 Example for the usefulness of Contexts using the concept bug 26

3.13 Translates relation links without a language-independent concept 30

3.14 Translates relation links using a language-independent concept 30

4.1 Use cases for the GlossarySystem . 34

4.2 An exemplary search for a concept . 35

4.3 Setting a context as the current context . 37

4.4 An exemplary creation of a new concept . 38

4.5 Overview over the GlossarySystem’s layers and its packages and classes 41

4.6 DTO classes for the GlossaryAPI . 44

4.7 Example of the usage of the Prototypical GlossarySearcher 49

D.1 TestCaseGlossary . 72

D.2 TestCaseGlossary2 . 73

D.3 TestHierarchicalRelationsGlossary . 74

D.4 TestAssociativeRelationsGlossary . 75

xi

xii

Chapter 1

Introduction and problem description

In in the requirements engineering and in software projects, a glossary of terms should be de-
fined to store project-specific terms and definitions that are used in the different artifacts of this
project. Every term that is used in a project-specific artifact (e.g. a requirement in a requirement
list, a wiki entry, or a textual note made during a project meeting) and whose definition devi-
ates from a generally clear definition (such as the definition a seat for one person, with a support
for the back of the term chair [33]) should be defined in that glossary. This serves to make the
meaning of the term clear to all those involved in the project and to avoid misunderstandings
about the meaning of terms.

A well-defined glossary of terms is especially important in the process of requirements engi-
neering: The use of ambiguous and/or not clearly defined terms in requirements can lead to
different understandings of this requirements. A consequence of this can be an implementation
of a requirement that is not as intended by the requirements engineer. Moreover, requirements
in a project have contractual character. The ambiguity of a requirement which may be caused
by an ambiguous term can lead to a different understanding between the contracting parties
and to a legal dispute in the worst case. It would therefore be important that glossaries are as
comprehensible as possible and are as easy to maintain as possible.

1.1 Problems with current glossaries

However, in most cases, such glossaries are only realized as term definition lists, which raises a
number of problems:

Homonyms (terms with several meanings) and synonyms (terms that have the same meaning)
are only difficult to represent in combination with a good findability and maintainability. For
example, in the ECSS Glossary of Terms [6], to represent the synonymous terms component and
part, the definition of one term is used to refer to the other term or is noted as NOTE. But
especially homonyms are critical in glossaries and should receive increased attention: For ex-
ample, in the requirement The system shall enable to find the bug, the term bug could refer to a
programming error, a hidden microphone, or an insect, which is a source of ambiguity.

Another problem is that useful relations between term definition pairs are also hard to represent
in a term definition list-like glossary. For example, if a part-whole relation between two terms
should be represented, this would also have to be annotated in the textual definition, which
makes the definition larger and more incomprehensible. This becomes clear, for example, when

1

looking at the NOTE notes of the ECSS Glossary of Terms [6]: these are at least outside the
textual definition, but informal and rather difficult to read. This problem increases with an
increase in relations that are represented. This is not as desired since these relations should
actually help to increase comprehensibility.

Finally, in conventional glossaries it is difficult to create thematic groupings (which are also called
contexts). There are different approaches to this, but all of them are rather disadvantageous.
One approach to this is the thematic grouping using headings, another approach is to write the
context to the term in the glossary. Both approaches are used in the ECSS Glossary of Terms
[6]:

In section 2.2 of the ECSS Glossary of Terms, terms that correspond to specific contexts (what is
referred to as breakdown of the overall Space System there) are grouped using headings. These terms
are repeated in section 2.3 in order to include all terms of the ECSS Glossary in an alphanumeri-
cal listing. This illustrates that grouping by headings and alphanumeric sorting contradict each
other. In addition, the repetition of the term definition pairs creates redundancy, which impairs
the readability and maintainability of the glossary.

In section 2.3 of the ECSS Glossary of Terms, contexts are noted in angle brackets to annotate
different meanings of the same term in different contexts. E.g., the term acceptance has two dif-
ferent meanings in the “contexts” act and process. However, this is not a good solution, because
on the one hand there are two parallel representations of contexts (headings and the bracket
notation), contexts themselves cannot be given properties in this way and this annotation is
rather informal and can lead to mistakes and inconsistencies.

These restrictions reduce the maintainability and cross-project usability of glossaries.

1.2 Short analysis of glossaries of ESA System Requirements Docu-
ments (SRDs)

To gain further insights about glossaries from real projects, a few requirements documents
(SRDs) from the European Space Agency (ESA) were analyzed regarding the structure of their
glossaries. It turned out that the glossaries in these documents were realized very differently:

For example, [21] and [27] make a distinction between the listing of term definition pairs and
the listing of abbreviations and acronyms, [23] and [26] refer to external documents regarding
the glossary, and in [22] there is no overarching reference to glossaries at all (only in section 6.8,
a reference is made in a single requirement to the paragraphs 3.1 - 3.3 of [19]).

In [25] again, term definition pairs are annotated in the document in section 1.6 in the same
way as requirements, with these requirements being both references to other documents and
bundles of definitions. In some cases, requirements are even mixed up with requirements in
that a requirement stipulates that several terms are to be used in a certain context, which are
then defined under the same requirement ID.

In [24], annexes B, C, D and F correspond most closely to a glossary because of their content.
Terms to be defined are mostly noted there as headings, the definitions contain relatively many
formulas due to the nature of [24].

The scope of the glossary contents of the examined requirements engineering documents also
differs considerably. While e.g. chapter 2.2 Definition of [27] consists of only 7 short term defini-
tion pairs, which take up a quarter of a DIN A4 page, [24] contains 16 pages of term definition
content (Appendix B-D) and with Appendix F additionally a three-page list of acronyms.

2

The formatting of the term definition pairs is also very different. For example, while [21] uses a
simple bullet point list and [27] a simple listing, [19] (in sections 3.1 - 3.3) uses a structure simi-
lar to the ECSS Glossary of Terms for the definitions of terms. [25] again uses the already men-
tioned requirements notation for term-definition pairs, alghough these enumerations them-
selves differ within the chapter.

Finally, in [21] and [24] the lists of concept-definition pairs are separated from the lists of
acronyms and abbreviations.

This analysis leads to the conclusion that there is a need for a more structured and consistent
solution for glossaries.

1.3 Research Questions

Instead of being subject to restrictions and problems as described in section 1.1, a glossary
should allow to formally represent homonymy and synonymy to help people not think they
are writing or talking about the same thing even though they are writing or talking about
different things. If a homonymous term like bug occurs, it should be clear at a glance if a
programming error or a hidden microphone or an insect is meant. In addition, it should be
possible to formally define further properties of terms and definitions and relations between
different term definition pairs and to use these relations for a better understanding of the rela-
tionships between terms and their definitions. Furthermore, it should be possible to explicitely
represent thematic groupings more formally and flexible than, for example, with headings and
angle bracket notes.

The identified problems lead to the following research questions:

RQ1 What should a glossary be like that is useful for requirements engineering?

RQ2 How can contexts be represented in such a glossary?

RQ3 How can such a glossary including contexts be technically implemented?

These research questions will be solved in the next two chapters and answered in the conclu-
sion.

3

1.4 System Vision

The aim of this work is the development of a system for the creation and usage of glossaries of terms
(short: glossaries) that can be used in combination with artifacts (requirements lists, diagrams,
wiki entries, notes, . . .) of the requirements engineering. It should enable the definition of
structured and more formal glossaries. This includes in particular the definition and explicit
representation of relations between glossary entries that are useful in the field of requirements
engineering. The result should be glossaries of higher quality that can be better maintained
and used across projects.

In a project, especially in a project where software is developed, a glossary of terms should be
created in order to define the meanings of project-specific terms. Such project-specific terms can
occur in various artifacts of a project, e.g. requirements, UML diagrams, wiki entries, or textual
notes from project meetings. Members of a project can use the glossary to look up definitions
of terms and to define new project-specific terms. The glossary of terms is especially used by
requirements engineers to define project-specific terms used in requirements and other artifacts
of the requirements engineering and to look up already defined terms. Furthermore, it is used
by software engineers who implement those requirements.

1.4.1 Problems with current glossaries of terms

So far, those glossaries of terms are usually realized as simple listings of the form term - definition
and stored in textual documents. The definitions often have different thematic references and,
due to their often very specialized background, a certain complexity, e.g. the term relative
pointing error from a requirements document of the ESA JUICE mission [25]. For this reason, it
would be helpful to explicitly represent certain relations between the terms and definitions of a
glossary.

Unfortunatelly, such relations are only represented relatively unsystematically, if at all, in tex-
tual form. For example, for the term component from the ECSS Glossary [6], a note is provided
with the information that the term part is synonymous to component as informal textual infor-
mation. However, this is still a very ordered example. In other glossaries, such information is
included unseparated in the definition text or not contained at all, but is still relevant for the
use of the terms.

Conventional, purely textual glossaries often use alphanumeric ordering of the contained terms
to facilitate the search for a term and its definition. Another frequently used technique is the
thematic grouping of terms and their definitions using headings. Unfortunatelly, one technique
weakens the objective of the other technique: Thematic grouping of terms with the help of
headings destroys a uniform, alphanumeric listing and thus makes the search more difficult
if the searcher is not sure about the thematic classification of the term in the glossary, even
if terms are alphanumerically sorted within a section defined by a heading. And a uniform,
alphanumeric listing in turn makes it impossible to group terms thematically with the help of
headings.

This problem also appears, for example, in the ECSS Glossary of Terms, where terms are listed
alphanumerically in one section and according to thematic connection in another section [6].
But listing terms two times makes the glossary more difficult to read: One has to search for a
term in one section and then to jump to the other section in order to become clear about the
thematic context of the term.

4

Additionally, with sections and subsections, it is only possible to express simple, hierarchical,
thematic groupings. But it is not possible, for example, to express that the terms of a subsec-
tion thematically belong to two different fields, where one of these fields cannot be expressed
as a subheading of the other field, expressed as superheading. An example from the ECSS
Glossary of Terms is given below. In this case, the subsection and all of its terms would have
to be repeated under two different sections representing those fields, which would complicate
maintainability and readability of the glossary.

These problems also make it difficult to use a glossary across projects, which could be useful,
for example, for thematically related projects.

1.4.2 Solutions provided by the system to be developed

In order to improve these problems, a schema should be developed in the scope of this work
that formally describes the structure of glossaries. This schema should provide a formal defi-
nition of relations between terms and definitions that are especially useful for artifacts of the
requirements engineering. Furthermore, a system should be developed that should provide
the definition and usage of glossaries based on the developed schema. The system gets the
straightforward name GlossarySystem.

With respect to the above example, in a glossary created with the GlossarySystem, it should
be possible to define systematically that component and term are synonyms. By keeping terms
from the ECSS Glossary [6] as examples, it should also be possible, for example, to define that
space segment is a supertype of segment and that space segment is a compound term. Instead of
inflating the definition text, this information should even help with the clarity and findability
of definitions. The system should support many more useful relations and properties of terms
and definitions.

A new idea that should be modelled in the schema and realized in the GlossarySystem is to
group terms and their definitions by so called contexts. The idea with contexts is to overcome
the limitations by the already mentioned headings with which only hierarchical groupings
can be defined. It should be possible to nest terms with their definitions and other contexts
arbitrarily in contexts. In particular, contexts should help in the search for definitions of terms.
The schema to be developed should define how contexts can be used and the GlossarySystem
to be developed should support the creation and usage of contexts.

For example, the headings of section 2.2 of the ECSS Glossary of Terms [6] could be used as con-
texts for the terms under these headings. E.g., segment and component would be in the context
definitions for generic terms and both space segment and space segment system in the context defini-
tions for space segments. Subsequently, further contexts could be added. For example, a context
EEE (electrical, electronic and electromechanical) device could be defined and the terms component
and relifing could be set in this context. Setting component in the context EEE device would not
have been possible using headings, since it does not make sense to define EEE device as sub-
heading of the heading definitions for generic terms or vice versa. With the GlossarySystem, it
should be possible to search, for example, for the term component using one of its contexts, e.g.
EEE device or definitions for generic terms.

The GlossarySystem should be connected to an external electronic dictionary like the Oxford En-
glish Dictionary [17] or the WordNet [32] in order to provide non-project-specific terms and

5

definitions. In this way, if one wants to know about a non-project-specific term that, for ex-
ample, occurs in the definition of a project-specific term, the medium must not be changed
for looking up this term. It may also happen that a project-specific term has not yet been
defined, but its project-specific definition would be similar to a common definition of a non-
project-specific term. In this case, the non-project-specific term could still help with its general
definition or even help with defining a new project-specific term. For example, the definitions
of the term system from the ECSS Glossary of Terms [6] and from the Oxford English Dictionary
[17] are very similar.

The system should not be a closed system, but should make its functionalities available for
external systems via an interface. Such external systems using the interface could be programs
that are useful for the requirements engineering process, e.g. a glossary editor which displays
the output of the GlossarySystem as beautiful and clearly as possible or a program that sup-
ports users in writing requirements and uses the functionalities of the GlossarySystem for this
purposes.

It is planned to develop a prototypical glossary editor within the scope of this work, which
will allow to search, define and edit glossaries. This editor should use at least the most central
functions of the GlossarySystem’s interface.

6

Chapter 2

Basics

In this chapter, a theoretical background to glossaries and a few technologies that are used in
this work are shortly introduced.

2.1 Theoretical background to glossaries

A glossary of terms is used „to provide definitions of key concepts on which everyone should
agree“ [14] and thus to define a common language between members of a project. According
to van Lamsweerde [14], four central tasks can be identified for a glossary of terms:

• providing precise, intelligible definitions of all project specific terms, especially key con-
cepts of a project

• avoiding or reduction of clashes in terminology, designation, and structure

• providing a list of accepted synonyms

• ensuring that the same term does not refer to different concepts and that the same concept
is not referred to under different terms.

A glossary can be a good base for the architecture of the system [18]. Moreover, a good glossary
is be the basis of a rough information model as a class diagram (domain model) [18].

A good glossary can give newcomers to a system a good overview of the system without fur-
ther documents, as central terms are explained briefly and concisely. Other artifacts may ex-
plain these terms in too much detail for beginners. A well maintained glossary is therefore a
good entry point into a system.

2.2 JGraLab

JGraLab, the Java Graph Laboratory, is a graph library that implements TGraphs [28] (see 2.3) and
provides an API for accessing and manipulation those TGraphs [30].

In the GlossarySystem (see chapter 4), the code generator functionality of JGraLab1 is used
to generate the classes of the GlossarySchema on the persisting/database layer of the Glos-
sarySystem (see section 4.2.1).

1see https://github.com/jgralab/jgralab/wiki/Create-a-Graph

7

https://github.com/jgralab/jgralab/wiki/Create-a-Graph

2.3 TGraphs

As stated in [29] TGraphs are „a very general class of graphs“ with (among others) the following
properties: All vertices and edges of a TGraph are attributed and typed. The edges of a TGraph
are directed but can be navigated in both directions. Vertexes and edges can be inherited multiple
times.

TGraphs are used as persising format by the GlossarySystem with the aid of JGraLab and
the classes generated by JGraLab using the TG schema representation of the GlossarySchema
(GlossarySchema.tg - see also section 4.2.1), generating so-called TG files.

2.4 WordNet

As stated in [32], the WordNet is „a large lexical database of English“ that expresses different
word forms and their meanings in a formal structure that has a certain similarity to the struc-
ture of the GlossarySchema: „Nouns, verbs, adjectives and adverbs are grouped into sets of
cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by
means of conceptual-semantic and lexical relations.“ [32] The WordNet was developed at and
is maintained by the Princeton University.

The WordNet can be used as a reliable source for general definitions of terms. Thus, it should
be used as external electronic dictionary as stated in the system vision (section 1.4) and in the
use case Import Concept using JGWNL (see 2.5) as stated in section 4.4.1 in future work on the
GlossarySystem.

In addition, the structure and the properties of the WordNet were used in the development of
the GlossarySchema (see chapter 3). Furthermore, the WordNet is frequently used as a source
for term definitions in examples in this work, for example in chapter 3 and in the test case
glossaries (see appendix D).

2.5 JGraLab WordNet Library (JGWNL)

The JGraLab WordNet Library (JGWNL) is „a library for the English language“ that consists of
„a database of about 200,000 predefined words, imported from the WordNet“ and „an effi-
cient and convenient application programming interface (API) to access and manipulate the
database“ [4]. It was developed at the university of Koblenz-Landau and uses the same per-
sisting format (TGraphs) as the GlossarySystem.

As stated in section 4.4.1, JGWNL should be used to integrate the WordNet as external electonic
dictionary into the GlossarySchema in future work.

Furthermore, the JGWNL metamodel [4] was used as source of inspiration in the development
process of the GlossarySchema (see chapter 3).

8

Chapter 3

The GlossarySchema

In this chapter, the structure and semantics of the developed GlossarySchema are explained
step by step, derived from literature and illustrated with examples.

The GlossarySchema is a schema which can also be described as metamodel that allows to repre-
sent glossaries mainly for the requirements engineering and software projects as thesauri, de-
veloped in the scope of this work. According to ISO 25964-1 [12], a thesaurus is a controlled and
structured vocabulary that represents concepts (unit of thoughts) by terms (words or phrases),
explicitly represents relations between concepts and allows to represent both preferred terms
and non-preferred terms for those concepts. The GlossarySchema is modelled as UML class
diagram and can be seen as a whole in figure 3.1. It enables the formal representation of prop-
erties of and relations between terms and definitions of a glossary.

The GlossarySchema makes a fundamental distinction between terms and definitions repre-
sented within so-called concepts. A concept abstracts a specific meaning and has further proper-
ties, e.g. one or more terms and relations to other concepts. Homonyms (terms with more than
one meaning [31]) and synonyms (meanings that can be described by more than one term [31])
are represented using this distinction between terms and concepts.

The focus of the GlossarySchema is on concepts by defining most of the relations supported
by the metamodel between concepts (and not between terms) and by placing concepts in so-
called contexts (also rather than terms). A context is a grouping of concepts and other contexts
and abstracts a special scope or topic. It is realized as special concept in the GlossarySchema.

The new and innovative feature of the GlossarySchema is that it is possible to assign different
concepts to different contexts, independently of the terms of these concepts. An example for
this can be found in chapter 3.6, figure 3.12. Contexts are explicitely represented and concepts
and contexts can be arbitrarily nested in contexts. This is used to overcome the limitations
mentioned in the system vision of grouping terms and their definitions using nested headings.

The GlossarySchema was developed by evaluating literature from the fields of requirements en-
gineering, linguistics and controlled vocabulary and thesauri standards. It was developed with the
intention to make it as usable as possible in projects and artifacts in the requirements engineer-
ing and software development.

The GlossarySchema is fully compliant with ANSI/NISO Z39.19-2005 [2], a standard for the
construction, format and management of controlled vocabularies (lists of explicitly enumerated

9

Figure
3.1:The

G
lossarySchem

a

10

terms, which includes more complex controlled vocabularies as thesauri), since all required
and many recommended rules are fulfilled by the GlossarySchema.

ISO 25964-1 [12], a standard for the development of thesauri for information retrieval, and ISO
25964-2 [13], a standard for the interoperability of thesauri with other vocabularies, would be
further useful standards by which the GlossarySchema could be adjusted or supplemented. For
reasons of time, these two standards were not worked through. The adaptation and a possible
extension of the GlossarySchema to ISO 25964-1 [12] and ISO 25964-2 [13] could be future work.

In the following, the GlossarySchema is explained step-by-step.

For reasons of readability, most of the relations of the sample object diagrams are represented
as simple associations rather than displaying an object for every association class. Also for
reasons of readability, many attributes of the objects in the object diagrams were not filled with
values and some relations required according to the constraints of the schema were not defined.

3.1 Terms and Concepts

The basic idea of the GlossarySchema is to separate terms and concepts (see figure 3.2), to put
the concepts into contexts (which will be explained later in this chapter) and add relations to
them. In order to do this, terms are saved as Terms and their definitions as Concepts. For a
Term that has n different definitions (a homonym), n Concepts are added (example: see figure
3.3). For a Concept which is known under n terms (these terms are synonyms), n Terms are
added (example: see figure 3.4).

The support of the two relations homonymy and synonymy and of abbreviations was inspired by
the Glossary entry from Glinz [11] where these are mentioned as frequent relations in glossaries.
The GlossarySchema does not distinguish between full homonymy (different meaning, but same
spelling and pronounciation) and homography (different meaning and pronounciation, but same
spelling) like it is done in Ulrich [31] since this linguistic subtleties would go too far.

Polysemy (same term, but different meanings, where the meaning can be derived from the con-
text [31]) can be expressed as normal homonymy relation and assigning different Contexts to
the different Concepts of the homonymous Term. Homophony (different meaning and spelling,
but same pronounciation [31]) is threaded as synonymy in the GlossarySchema.

The separation of terms and their definitions into Terms and Concepts is inspired by the JG-
WNL Metamodel from Bildhauer et al. [4], an extension of the WordNet [32] structure. In ad-
dition, in Z39.19:2005 [2], the term concept is defined as „unit of thought, formed by mentally
combining some or all of the characteristics of a concrete or abstract, real or imaginary object.
Concepts exist in the mind as abstract entities independent of terms used to express them.“
Concepts are thus explicitly independent of Terms, which is explicitly modeled in the Glos-
sarySchema (Terms do not serve to cover Concepts but only to designate them)1.

1Z39.19:2005 [2], section 11.1.3.1 states that terms cover concepts, which is unhappily phrased according to the
research in this work.

11

Figure 3.2: GlossarySchema excerpt: Term and Concept

12

Figure 3.3: Homonymy example

Figure 3.4: Synonymy example

According to van Lamsweerde [14], page 31, a glossary of terms should „ensure that the same
term does not refer to different concepts and the same concept is not referred to under different
terms“. Furthermore, Z39.19:2005 [2] requires that „[a] controlled vocabulary must compen-
sate for the problems caused by ambiguity by ensuring that each term has one and only one
meaning.“ which would mean that no homonyms are allowed in a glossary.

Due to the previously explained structure of the GlossarySchema, homonyms and synonyms
can exist in the GlossarySystem without this being a problem for clarity or traceability. Since
homonyms may exist, it is also possible to insert non-project-specific terms from external, elec-
tronic dictionaries, which will be discussed later. Nevertheless, project-specific terms should
be formulated differently from general terms.

In the GlossarySchema, Terms function only as “labels” for Concepts. Concepts are the cen-
tral entities of the GlossarySchema. The main purpose of Concepts is to store the definition
of at least one Term. The definition of a Concept must be unique.

Since Concepts are strictly separated from Terms and play the main role, relations, which in
the literature are referred to as “between terms” are realized between Concepts in the Glos-
sarySchema. Of course, it is implicitly clear in literature as well that these are actually relations
between the concepts behind the terms. For example, in Ulrich [31], the definition of Begriff
(German for term) starts with „Begriff [auch: Konzept]“2 (term [also: concept] in english) what
is a clear reference to that.

Z39.19:2005 [2] requires that „each relationship indicated between Term A and Term B must
have a corresponding relationship from Term B to Term A“, which is called reciprocity. The
GlossarySchema follows this rule for all of its relations. In addition, for all symmetrical relations
(relations that inherit from HasParent, HasParent itself, and for the ContainsConcept),
navigability is facilitated by role names on both sides. Unfortunatelly, this is not possible for

2The content in square brackets is part of the quotation and not inserted retroactively.

13

asymmetric relations (HasRelatedConcept and HasAntonym) since role names may not ap-
pear twice on the same association in UML.

In the GlossarySchema, preferred terms are Terms that should preferably be used to represent
their corresponding Concepts in artifacts, e.g. in requirements. An example is given in figure
3.4. Z39.19:2005 [2] requires that „[a] controlled vocabulary must compensate for the prob-
lems caused by synonymy by ensuring that each concept is represented by a single preferred
term“ and recommends that non-preferred terms should be used to lead to their correspond-
ing preferred terms. Therefore, a Concept can only have a single preferredTerm. In the
GlossarySystem, the preferredTerm of a Concept is used to represent the Concept, which
becomes clear, for example, in the prototypical GlossaryEditor.

Z39.19:2005 [2] recommends that if a concept has more than one terms, the preferred term
should be the term that the user is most likely to search for. But this can vary in different
contexts: E.g. for the term component from the ECSS Glossary of Terms [6], it is defined that
„[t]he term “part” is preferred when referring to purely mechanical devices“ and „[t]he term
“component” is preferred for EEE [(electrical, electronic and electromechanical)] devices“.

In a glossary derived from the GlossarySchema developed in this work, this can only be real-
ized either through creating an additional Concept with a different preferredTerm or by
all users agreeing on a preferredTerm that applies in all Contexts. Unfortunatelly, the
GlossarySchema cannot define an association between Contexts and preferred terms as this
could only be modelled using an association between an association class and a normal class.
In graph theory, this would be edges between edges, which is not representable using TGraphs
(the graph type on which the persistence format (TG files) of the GlossarySystem is based,
which is explained later).

In addition to Z39.19:2005, source of inspiration for preferredTerms is the postable/non-postable
term concept of the NASA thesaurus [16]. In the GlossarySchema, all Terms that are synonyms
but no preferredTerms are implicitly non-preferred terms as defined in Z39.19:2005 [2] (where
these are called entry terms). Z39.19:2005 [2] recommends that cross references between a pre-
ferred term and non-preferred terms should be made. In the GlossarySchema, this is realized
transitively since other synonyms or the preferred term can be retrieved via the Concept to
the synonym or preferred term.

3.2 Concept properties that are no self-relations

Every Concept must have a definition. This can be a simple sentence or a more complex
format like HTML, Markdown or LATEX source text, containing mathematical formulars and
diagrams. A weak point of the GlossarySchema is that the content of a definition is not for-
mally represented. For example, there is no formal provision for dealing with a definition
that includes the term string of a Term being part of the glossary as in figure 3.6.

This problem could be delegated to external systems using (a futurely planned function of)
the GlossarySystem (which is discussed later): External systems could use the functionalities
of the GlossarySystem and, for example, HTML markup, to link terms to their corresponding
concepts in the GlossarySystem. Alternatively or in addition, a more formal definition for the
attribute definition could be defined in future work.

14

Figure 3.5: GlossarySchema excerpt: Concept and its self-relations

The same problem occurs with exampleSentences described later in this chapter, for which
the two suggested solutions can be applied analogously.

A Concept can be a topConcept if it has subtypes but no supertypes (sub- and super-
types are explained below). The representation of topConcepts was inspired by the top term
concept from Z39.19:2005 [2]. (A top term (also called broadest term) is the top hypernym of a hy-
ponymy hierarchy, which itself does not have a hypernym, e.g. the term entity3 in WordNet.)

For each Concept it is possible to provide any number of exampleSentences, which should
serve to explain the definition of the corresponding Concept. Source of inspiration for the
possibility to add exampleSentences to Concepts is the WordNet which provides example
sentences for some of it’s definitions. Example: The example sentence a city and its satellite
communities for the adjective satellite4 (with the definition surrounding and dominated by a central
authority or power) [33]. In the JGWNL metamodel, the example sentences of the WordNet are
stored in the the gloss attribute of the Synset class [4]. Providing exampleSentences could
also be useful to establish compatibility with the WordNet and to map the WordNet content to
the GlossarySchema.

The attribute language of Concept denotes the language of both attributes definition
and exampleSentences of Concept. At present, the GlossarySchema supports the four lan-

3http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=
&o4=&s=entity&i=0&h=0#c

4See http://wordnetweb.princeton.edu/perl/webwn?s=satellite&sub=Search+WordNet&o2=
&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=0.

15

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=entity&i=0&h=0#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=entity&i=0&h=0#c
http://wordnetweb.princeton.edu/perl/webwn?s=satellite&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=0
http://wordnetweb.princeton.edu/perl/webwn?s=satellite&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=0

Figure 3.6: Example: The term string of the Term componentTerm is part of the definition of the Concept
equipment.

guages English, American English, British English and German. A small inaccuracy of the schema
is that the combination of definition and exampleSentences of the Concept may con-
tain terms in British English as well as terms in American English. Therefore, the language
indicated for a Concept should be either German or English, but not British English or American
English.

The source attribute of Concept is used to specify the source from which the Concept’s
definition originates. It was inspired by the ECSS Glossary of Terms [6], in which definition pairs
taken from external sources and, if necessary, adapted, are identified by indicating the source
in square brackets (e.g. [ISO 9000:2005]).

The source attribute is only made available for Concepts. Maybe the declaration of a source
could also make sense for project specific terms and for unique names. This could be future
work after application of the GlossarySystem in practice. Furthermore, it could be future work
to define a formal structure for source.

3.3 Relations between Concepts

Z39.19:2005 [2], section 8.4 recommends to make explicit the nature of the relationships between
terms linked as associative relationships. For this purpose, the GlossarySchema provides hier-
archical and associative relations.

HasParent represents all relations that arrange Concepts hierarchically. It is derived from
the common hierarchical relation concept in Z39.19:2005 [2].

16

Figure 3.7: Example for a part with multiple wholes: component is part of both element and equipment.

The hierarchical relation HasWhole is derived from the Whole-Part relationship as described
in Z39.19:2005 [2] respectively from the concept of Holonymy/Meronymy as described in the
WordNet [32] (which is also referred there as part-whole relation). According to the WordNet de-
scription [32], parts of a meronymy relation are inherited transitively („if a chair has legs, then
an armchair has legs as well.“ - regarding the GlossarySchema related to the corresponding
Concepts of chair and armchair).

Z39.19:2005 [2] recommends that „the name of the whole and its part(s) should not have a hi-
erarchical relationship“ if „a whole-part relationship is not exclusive to a pair of terms, i.e.,
the part can belong to multiple wholes“. For this case, Z39.19:2005 [2] recommends to link the
terms (with reference to the GlossaryMetamodel the corresponding Concepts) associatively
rather than hierarchically. However, since there seem to be many examples where a part can
belong to more than one wholes, e.g. figure 3.7 and since the standard did not provide a valid
argument for this limitation, this recommendation is ignored in this first version of the Glos-
sarySchema. Maybe the multiplicity of the role whole of the HasWhole relation should be set
to 0..1 in future work.

The hierarchical relation IsARelation combines the two relations Generic Relationship as de-
scribed in Z39.19:2005 [2], section 8.3.1, and Instance Relationship as described in Z39.19:2005
[2], section 8.3.2. The only difference between Generic and Instance Relationships seems to be
that Generic Relationship represents a relationship between a class (e.g. succulent plants) and a
member or species (e.g. cacti), while Instance Relationship represents the relationship between „a
general category of things [. . .] and an individual instance of category, often a proper name“[2]

17

(proper names are a similar concept in Z39.19:2005 [2] to unique names in the GlossarySchema),
e.g. between mountain regions and Alps.

This distinction also seems to make sense for the context of requirements engineering. Individ-
ual instances (e.g. the Concept of the first sovjet satellite Sputnik, an individual instance of the
Concept of artificial satellite) are distinguished from common instances (e.g. the Concept of
the carrier rocket Ariane 5, a special type (subtype) of the Concept of carrier rocket) using the
attribute individualInstance. Furthermore, an IsARelation defined in the glossary of
terms in the phase of requirements elicitation can inspire to define superclasses and subclasses
according to the IsARelations in the later implementation phase (if an object oriented lan-
guage is used for the implementation).

The multiplicity * for the role supertypes of IsARelation allows that a Concept can be of
different classes. E.g. the Concept of Ariane 5 could be a subtype of both the Concept of space
object and aircraft. In object oriented programming, this would be called multiple inheritance.

Besides Z39.19:2005 [2], the IsARelation is inspired from the concepts of broader term and
narrower term defined and used in the NASA thesaurus [16] and from the concept of hyponymy
from the WordNet [32] and Ulrich [31]. According to the WordNet documentation [32], Hy-
ponymy (and thus also IsARelation) is always transitive, i.e. each hyponym (subtypes)
inherits its hypernyms (supertypes) from its hypernyms (supertypes). Example: Since the
Concept of bird is supertype (hypernym) of the Concept of merl and the Concept of animal
is supertype of the Concept of bird, the Concept of animal is also supertype of the Concept
of merl 5.

HasRelatedConcept represents all relations that arrange Concepts associatively. It is de-
rived from the associative relation concept as described in Z39.19:2005 [2] and from the related
term relation in the NASA thesaurus [16].

The relation HasAntonym is derived from the concept of antonymy as described in Ulrich [31]
and in the WordNet documentation [32]. In the GlossarySchema, an antonym is a Concept
with an opposite meaning to another Concept, e.g. between the corresponding Concepts
to the Terms hot and cold.6 Unlike in the WordNet [32], antonymy is not only supported for
Concepts whose corresponding Terms are adjectives but (similar to Ulrich [31]) for all parts
of speech supported by the GlossarySchema, e.g. for nouns, e.g. life↔ dead.

Z39.19:2005 [2] shows two different ways to realize antonymy: Either as special near synonym
7 or as special associative relationship. In the GlossarySchema, the second way was choosen
(through HasAntonym being a special HasRelatedConcept).

The hierarchies of association classes with their interitance relationships serve to make it easy
to extend the GlossarySchema at a later point of time. For example, if this turns out to be
useful, one could later simply add another relation to Concept or add an attribute to an

5http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=
&o4=&r=1&s=merl&i=2&h=100#c

6Ulrich [31] distinguishes three different forms of antonymy, and the WordNet [32] between full antonyms and
pertainyms (also called indirect antonyms). These different forms of antonymy are not considered in the Glos-
sarySchema since these doesn’t seem to be useful in the context of requirements engineering.

7„[T]erm[s] [whould be Concepts in the GlossarySchema] whose meaning is not exactly synonymous with that
of another term, yet which may nevertheless be treated as its equivalent in a controlled vocabulary. Example:
salinity, saltiness“ [2]. Near synonyms are not modelled in the GlossarySchema.

18

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&r=1&s=merl&i=2&h=100#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&r=1&s=merl&i=2&h=100#c

Figure 3.8: GlossarySchema excerpt: Element (superclass of Concept and Term)

existing relation. In addition, this serves for the simple inheritance of common character-
istics, and, regarding Concepts, the representation of the logical relations of the provided
relations between Concepts (e.g. the already described fact that HasAntonym is a special
HasRelatedConcept).

It could be argued that the both Concept relations HasParent and HasRelatedConcept should be
made abstract so that one has to decide for a concrete hierarchical or associative relation be-
tween Concepts. Since not all useful hierarchical and associative relations between Concepts
might have been defined yet, this was not done in this first version of the GlossarySchema in
order not to limit the system too much. However, this could be done in the future work after a
thorough evaluation of the system and the possible addition of further relations.

3.4 Properties for both Concepts and Terms

Concept’s and Term’s attribute historyNote can be filled with anything regarding the edit-
ing history of the Concept or Term. It is provided to avoid having to support version control
for the schema, which would go far beyond the scope of this work, but still allow time-related
notes to be made.

Source of inspiration for historyNote is the history note concept from Z39.19:2005 [2], section
6.2.3, the recommendation from Z39.19:2005 [2] that „[t]he term record should note the date
of each change and identify the individual responsible for it“ and the NASA thesaurus [16] in
which the date of insertion is stored for all new terms inserted after April 1988 (which is called
term-added date).

Future work might consist of substituting the relatively informal historyNotes with the de-
velopment of a version control system for the GlossarySchema and the GlossarySystem, which
could, for example, store in a formal way when a Concept was changed and who changed it.
This could help to find out how well a glossary has been or is maintained. This would also
comply the recommendation „[i]f a term is modified, the date of the change should be recorded
in the history note [. . .], and a USE reference should be made from the old form to the new
form.“ from Z39.19:2005 [2].

19

The storage of the persistence format files used by the GlossarySystem in a version control sys-
tem like Git would not be a practicable solution: On the one hand, the attribute historyNote
would not be used for the storage. On the other hand, such an external versioning would be
quasi a level above the persistence format and thus much too coarsely granular changes in a
single commit would be possible. Furthermore, there would be no direct connection between
the GlossarySystem and the version control system.

Source of inspiration for the attribute searchFrequency is the option shown in Z39.19:2005
[2], section 9.3.1.1, that the number of postings for assigned terms may be displayed. One pos-
sible application for searchFrequency is that the searchFrequency of a Term can be used
to influence the order in which the GlossarySystem returns the associated Concepts, which
can be used by the prototypical GossaryEditor and external systems using the GlossarySystem
to implement a syntax completion that preferentially suggests Concepts whose Terms have a
high searchFrequency. Another possible application is that, as suggested by Z39.19:2005 [2],
section 11.1.3.4, „Terms [or Concepts] with exceptionally high or low scores can be considered
as candidates for modification or deletion.“

To store the search frequency centrally is somewhat problematic: All programs that use this
value would have to use it in the same way to make it meaningful. However, since a central
search frequency would be useful for the above reasons, a better solution for this should be
developed in the future.

Z39.19:2005 [2], section 11.1.6 mentiones candidate terms („proposed terms that have not gone
through all acceptance procedures“). Due to the strict separation of Terms and Concepts,
the GlossarySchema provides both Candidate Terms and Candidate Concepts with the aid of
Element’s status attribute.

Figure 3.9 shows the different statuses supported by the GlossarySchema and the possible
changes from one status to another. Candidate Elements are marked with EDITED or option-
ally with SUBMITTED if they should be reviewed before publishing. As required in Z39.19:2005
[2] („[a]s soon as a candidate term is approved as a term, the symbol or phrase must be
deleted“), these two states are changed to PUBLISHED as soon as the Candidate Element
is approved. Every state can be undone (by changing back to EDITED). The different states
provided also serve to fulfill the requirement from Z39.19:2005 [2] that „[a] deleted or modified
term may be retained in the controlled vocabulary for retrieval or historical purposes only. If
it is retained, it must be marked, e.g., ”for retrieval purposes only”, and the date of its change
in status must be recorded in the history note and displayed to users.“. The last part of this
requirement is fulfilled by the above defined attribute historyNote.

Furthermore, Z39.19:2005 [2] requires that „[w]henever a term is modified or deleted from a
controlled vocabulary, the impact of the change on the ability to search previously indexed
database records must be considered, unless the modified or deleted term has never been as-
signed“. This is ensured by not deleting Terms or Concepts once they have been inserted into
the glossary, but only marking them as DELETED or DEPRECATED. A Term or Concept can be
marked as DEPRECATED if it’s used in old artifacts (e.g. requirements) but should not be used
in future artifacts. A Term or Concept is marked as DELETED if it was used once but is not
used any longer and should not be used any longer.

The different statuses and their possible changes are derived from the statuses supported
by the Module Manual (MoMa) system [15]. The main difference is that an additional status
DEPRECATED was added for Elements (Terms and Concepts) that shouldn’t be used any
more.

20

Figure 3.9: The different possible statuses of Elements (Terms and Concepts) and their possible
changes

3.5 Properties for Terms

Every Term has a term attribute representing its term string. This term string must be unique.

If both singular and plural are defined for a Term, the value of the Term’s attribute term must
be written in the singular. This is different to the recommendation from Z39.19:2005 [2], section
6.5.1, that all count nouns „should normally be expressed as plurals“.

The GlossarySchema provides the part of speeches noun, verb, adjective and adverb, which also
occur in the WordNet [32]. Additionally, modalverb, non-count noun and unique name are sup-
ported.

According to Ulrich [31], a modalverb is a verb that expresses the conditions for the realization of
a verbal event, e.g. should in I should work. The explicit identification of modal verbs is interest-
ing in the requirements engineering and thus supported in the GlossarySchema, as modalverbs
often serve to define the degree of legal obligation in requirements. This is especially true for
requirements written according to formal templates like the MASTeR templates from Sophist [20],
where the modalverbs shall, should and will sign the different kind of legal obligation.

Unique names are used to distinguish the names of common entities (e.g. satellite) from the
names of unique entities (e.g. the first sovjet satellite Sputnik). They are inspired by the concept
of unique entities from Z39.19:2005 [2] and the concept of identifiers from the NASA Thesaurus
[16].

The concept of unique names and the IsARelation should help to distinguish abstract require-
ments from specific requirements.

Z39.19:2005 [2], section 6.5 recommends to distinguish count nouns („names of objects or con-
cepts that are subject to the question “How many?” but not “How much?”“, e.g. books or

21

Figure
3.10:G

lossarySchem
a

excerpt:
T
e
r
m

22

penguins) and mass nouns („names of materials or substances that are subject to the question
“How much?” but not “How many?”“, e.g. snow water, also called non-count nouns) through
writing count nouns in the plural and mass nouns in the singular. Instead, the GlossarySchema
uses the enum literals NOUN and NON_COUNT_NOUN for this purpose. All Nouns which do not
have the value NON_COUNT_NOUN are considered count nouns.

The part of speech of a Term is expressed exclusively using the attribute pos. The abstract
subclasses of Term only serve to improve the readability of the GlossarySchema8. The fact that
UniqueName is a subtype of Noun and ModalVerb is a subtype of Verb is handled by the
GlossarySystem, which is explained later.

Source of inspiration for the attribute number of Term is the NASA thesaurus [16], where count
nouns are represented in the plural and non-count nouns in the singular. Furthermore, it makes
sense to know in the context of requirements engineering whether the plural is defined for a
term while formulating requirements.

According to Ulrich [31], Numerus, a plural is defined for verbs.

Term’s compound attribute marks multiword terms, e.g. stained glass, as in Z39.19:2005 [2], sec-
tion 6.3.1. Actually, a compound Term is a special Term consisting of other Terms. However,
for reasons of clarity, this is not modelled explicitely. Instead, a compound Term is just marked
as compound term without explicit relations to its part Terms. 9. Further example of a com-
pound: The term masked out wildcard would be stored in the GlossarySchema as Term with the
part of speech noun that is a compound.

A term can be assigned one of four languages English, British English, American English and
German using the attribute language.

Source of inspiration for the attribute commonMisspellings is the option shown in Z39.19:2005
[2], section 9.3.1.1, that common misspellings may be stored in the thesaurus. They can be
used as “indirect synonyms” to find Concept most likely desired by the user, even if he has
made a typing error when entering a corresponding term. E.g. when many users accidentally
type “ACOS” instead of “AOCS”, “ACOS” should be stored as common misspellings in the
commonMisspellings attribute of the Term AOCS.

If a Term has at least one Abbreviation, this Abbreviation is implicitly a synonym for this
Term and vice versa. The same applies if an Abbreviation has at least one abbreviated term.
This design decision is inspired by Z39.19:2005 [2], page 42, where UN and United Nations are
given as examples for synonyms.

The restriction that an Abbreviation can only be selected as preferred term if it has not more
than one abbreviated term was made on the basis of Z39.19:2005 [2], section 6.6.3, where it is
recommended that „[a]bbreviations and acronyms should be selected as terms only when they

8Converting the subclasses of Term into concrete classes would not significantly reduce the complexity of the
necessary part of speech-related constraints of Term and Abbreviation.

9In the development phase it was considered to design the GlossarySchema in such a way that it would have
been possible to explicitly represent the parts of a compound term and the compound term itself as different Terms.
To realize that, the Composite Pattern [10] would have been implemented for Terms similar as for Concepts and
Contexts. However, since this would have led to a much more complex GlossarySchema with a rather low ex-
pected use in the intended application context at the same time, this was ommited.

23

have become so well established that the full form of the term or proper name is rarely used.
Cross-references should be made from the full forms.“. Due to the explicit representation of re-
lations between Terms and Abbreviations and the search functions of the GlossarySystem,
even for frequently used Abbreviations such as AI (for artificial intelligence) it is no prob-
lem if the Abbreviation has several abbreviated terms and thus the long form (e.g. artificial
intelligence) is used as preferred term.

3.6 Contexts

A Context is a special Concept that can be used to group and to categorize Concepts and
other Contexts. Concepts and Contexts can be contained in other Contexts. In the Glos-
sarySchema, this is implemented using the Composite Pattern10 [10]. A Context can contain
any number of Concepts (especially no Concept) and any number of other Contexts, but
each Concept that is not a Context must be contained in at least one Context.

It is important that a Context does not need to be in at least one other Context in order not to
prevent that there are root Contexts which are in no other Contexts. Especially a Glossary
or a Project could be such a root Context (Glossary and Project are discussed later in
this chapter).

As already mentioned in the introduction of this chapter, with Contexts, it is possible to assign
Concepts to different Contexts, independently of these Concept’s Terms, which is the new
and innovative feature of this work. An example for this is given in figure 3.12, which demon-
strates the usability of explicitely modelling Contexts and assigning Concepts to Contexts.

A Context is modelled as a special Concept since, for example, the mere name of a Context
seems quite limiting to clarify it’s purpose. But Concepts already have a lot of useful prop-
erties that can be used to describe relations that are useful in the context of requirements en-
gineering. Additionally, it is easier this way to implement the conversion of a Concept into a
Context if an existing Concept should be used to group other Concepts and/or Contexts,
and the opposite way (the conversion of a Context into a Concept, e.g. for the case that
contained Concepts and/or Contexts have been deleted).

A Concept or Context A can be either transitively or intransitively contained in another
Context B. If A is transitively contained in B, this means that A is contained in B itself and in
all other Contexts in which B is contained. If A is intransitively contained in B, this means that
A is contained exclusively in B. Thus, complex Context nestings can be modelled in different
ways.

If A is intransitively contained in B, this semantically means that the textual definition of B
should be applicable to A and all bad terms (see below) of B are also bad terms of A if A is a
Context. If A is transitively contained in B, this is also true between A and all Contexts C in
which B is contained.

10The use of the Composite Pattern in the GlossarySchema deviates from the standard Composite Pattern in that
the composite (Context) interits from the leaf (Concept) and not from the component (AbstractConcept). This
makes the implementation of the GlossarySystem easier: Otherwise, Concepts contained in a Context would be
returned as AbstractConcepts (and could not be casted to Concepts).

24

Fi
gu

re
3.

11
:G

lo
ss

ar
yS

ch
em

a
ex

ce
rp

t:
C
o
n
t
e
x
t

an
d
C
o
n
c
e
p
t

25

Figure 3.12: Example for the usefulness of Contexts: There are two different Concepts for the same
Term bug that are in different Contexts.

26

If a Concept or Context A is contained in another Context B and B is not contained in
another Context C, it does not matter whether A is transitively or intransitively contained in
B. This applies, for example, to the relations in figure 3.12, since the Concepts and Contexts
there are not linked to any other Concepts or Contexts. Furthermore, it can happen that the
ContainsConceptType should be adapted when inserting new elements into a glossary to
avoid non-elegant, complex ContainsConcept constructs.

The following example should demonstrate the use of an intransitive contains relation (the used
terms and definitions were taken from the ECSS Glossary of Terms [6]): The contexts definitions
for generic terms in which the concept of segment is contained and definitions for space segment in
which the concepts of space segment and space segment system are contained could be in another
context ECSS Glossary. ECSS Glossary again could be in a context ECSS documents. But it could
be argued that if someone thinks about the context ECSS documents, he or she thinks about the
different ECSS document types and concrete documents, but not about special content of those
documents. Thus, it could be desirable that just ECSS Glossary is contained in ECSS documents,
but not the both contexts definitions for generic terms and definitions for space segment and their
concepts.

However, this is more of a constructed example. No example for the usage of an intransitive
ContainsConcept relation could be found, which would not look constructed. But this con-
cept does exist theoretically and is therefore provided by the GlossarySchema (but not used by
the GlossarySystem, as stated in 4.6).

In the literature, many relations „between terms“ (between the concepts behind these terms)
are defined. For example, it can be expressed that an entity A is a part of another entity B (a
part-whole relation) or that A has an opposite meaning to B (antonymy relation). However,
every of these relations is only applicable in a relatively special scope.

Contexts are a much more general concept than the relations provided between Concepts.
Concepts and Contexts can be grouped in other Contexts for all possible reasons, which
seem meaningful to the user of a GlossarySystem.

When doing some things in a project, e.g. writing requirements, creating a diagram or writing
some code, terms and their concepts used in these artifacts are implicitly always in a certain
thematic area. Such thematic areas can be abstracted very well by the Contexts of the Glos-
sarySchema. For example, in the requirement KR-MIS-070 of the ESA CHEOPS Mission System
Requirements Document [21] („KR-MIS 070 The CHEOPS spacecraft shall perform the nominal
operations in a circular Sun-Synchronous Orbit (SSO).“), the concept behind the term spacecraft
is implicitely in the context CHEOPS mission. However, in the requirement SRD-MIS-2 of the
Euclid System Requirements Document [22] („SRD-MIS-2 Spacecraft consumables shall be sized
for 7 years in orbit.“), the concept behind the term spacecraft is implicitely in the context Eu-
clid mission. When searching for a certain Concept, e.g. for the Concept behind the term
spacecraft, it would be nice to pass this Context as search parameter. The developed Glos-
sarySystem, which is described in chapter 4, provides this possibility through providing search
functions that take the current context as a search parameter.

In Glossaries, contexts (thematic groupings) are often annotated implicitly in the definitions
of terms. Furthermore, there are some approaches regarding a more explicit annotation of
contexts. For example, in the ECSS Glossary of Terms [6], contexts are annotated in angle
brackets behind terms that have different meanings in different contexts, e.g. acceptance <act>
and acceptance <process>. Furthermore, the subsections of section 2 of the ECSS Glossary of
Terms also annotate contexts for the terms grouped below these headings.

27

However, explicitely modelling those contexts and allowing arbitrary nestability of concepts
and contexts in other contexts (excluding self-containment) as it is done in the GlossarySchema
gives a much higher flexibility which is comparable with tagging things (adding keywords to
different content where this content can be found using this keywords), but with a much higher
formality and much more power, especially through Contexts being special Concepts.

In the ECSS Glossary of Terms [6], a part of the term definition pairs from one section (Section
2.3 of [6], which is alphanumerically sorted according to the terms due to an easy findability)
are repeated in another section (Section 2.2 of [6]) according to a defined hierarchy (shown in
Figure 2.1 of [6]) with the help of headings and writing down the terms in a specific order.
With the aid of the GlossarySchema, it is possible to combine the two objectives representation
of structure and easy searchability of terms. Furthermore, it is possible to represent complex,
non-transitive nestings of Concepts and Contexts in other Contexts which cannot be rep-
resented with headings and writing down terms and definitions in a specific order.

This is demonstrated by the program CreateECSSGlossaryGraph.java, which was devel-
oped in the scope of this work and can be found in the package de.uni_koblenz
.glossary_system.glossary_creator in the src directory of the GlossarySystem’s pro-
ject directory. The program reads out the ECSS Glossary of Terms [6] PDF file and maps it to the
GlossarySchema. Furthermore, it generates contexts based on the headings in chapter 2 of the
ECSS Glossary of Terms and using the abovely mentioned contexts annotated in angle brackets
and assigns all these contexts accordingly. The output file has the name ecss-glossary.tg,
is stored in the createdGlossaries directory in the GlossarySystem’s project directory and
can be queried using the Prototypical GlossaryEditor, which is described in chapter 4.

In the GlossarySchema, there is no need for a direct linking between Context and Term. As
mentioned above, the GlossarySchema instead places Concepts in Contexts, while Terms
are only labels for concepts. This is best illustrated by Figure 3.12. Regarding the abovely
mentioned example from the ECSS Glossary of terms, the two different meanings of acceptance
from the ECSS Glossary of Terms would be represened by a single Term acceptance and two
different Concepts, where one of these Concepts could be set in context act and the other in
context process. This is also done by CreateECSSGlossaryGraph.java.

The ECSS Glossary of Terms [6], section 2.2 and CreateECSSGlossaryGraph.java also
help to make clear the usefulness of Contexts being special Concepts: On page 10, there is
the heading “Definitions for space segment” and directly below the term-definition pair “space
segment”. Among other things, CreateECSSGlossaryGraph.java creates Contexts using
the headings from section 2 of the ECSS Glossary of Terms and Concepts using the term-
definition pairs from section 2 of the ECSS Glossary of Terms. For example,
CreateECSSGlossaryGraph.java takes both the heading “Definitions for space segment”
and the term-definition pair “space segment” and creates a single Context with the preferred
term space segment. For all term-definition pairs below the heading “Definitions for space seg-
ment”, Concepts are created that are placed in this Context.

Glossary and Project are realized as special Contexts. Project is a Context that is
expected to be used so frequently that it is modeled as an explicit subclass of Context in
addition to Glossary. It should serve to aggregate all Concepts used in a specific project.

A Glossary can be related with any number of Projects. There may be Glossaries that
do not depend to a specific Project. A Project must be related with at least one Glossary.
Under certain circumstances, there may be Projects in which more than one Glossary is
used despite the fact that the GlossarySchema and the GlossarySystem are designed to use
Glossaries across projects.

28

The GlossarySchema supports the concept of bad terms, which are terms that should not be
used in a specific context. badTerms depend on Contexts and thus on Glossaries and
Projects so that a Term can be modelled as bad term in one or more specific Contexts
(while not being a bad term in other Contexts).

The concept of bad terms is inspired by Berry et al. [3], section 3.3.5, where „linguistic vague-
ness“ is described as a risk in software requirements, since „it is not clear how to measure
whether the requirement is fulfilled or not“. According to Berry et al. [3], „[a] statement is
considered vague if it admits borderline cases“ and describes fast response time as example of a
vague statement, because fast cannot be measured since it is a relative term. In Space engineering
- Technical requirements specification [7], section 8.3.3, such terms are listet, e.g. relevant, necessary,
and etc.. The badTermsList of a Context serves to denote all such Terms that should not be
used in this Context for the reasons stated above.

In Berry et al. [3] a non-functional, vague reqirement is defined as requirement that has „no
precise way of describing and measuring it“ or as requirement with „arbitrary quantification“.
The use of the previously named terms may lead to such ambiguous requirements. Therefore,
it should not be used and included in the badTermList of a corresponding Context.

3.7 Further aspects of the GlossarySchema

The inheritance hierarchies of the GlossarySchema serve to improve its extensibility. For exam-
ple, the class BadTermList was added relatively late in the modelling phase of this work. To
give BadTermList a UUID, it was simply derived from Element. A further example would
be the later addition of another associative relation, which can be realized relatively easily by
deriving this new relation from HasRelatedConcept.

With HasConcept’s attribute justification, the GlossarySchema provides the possibility
to justify every defined relation between Concepts. For example, in complex technical do-
mains, it might be useful to explain why a certain Concept has been placed in a Context to
make the glossary easier to understand.

The attribute justification is inspired by the concept of node labels from Z39.19:2005 [2],
which is applicable there to broader and narrower terms (which is covered by the IsARelation
in the GlossarySchema, as already mentioned). In Z39.19:2005 [2], the concept is illustrated
with the following example: diesel cars and electric cars are narrower terms of cars by motive
power, while racing cars and sports cars are also narrower terms of cars by purpose. by motive
power and by purpose are the particular node labels. This cannot be expressed by assigning
the Concepts of diesel cars and electric cars into a Context motive power and the Concepts
of racing cars and sports cars into a Context purpose since in the GlossarySchema, Contexts
refer to whole Concepts and Contexts and not to specific relations between Concepts like
IsARelation.

Furthermore, justification helps to fulfill the recommendation from Z39.19:2005 [2], sec-
tion 8.4 „to avoid subjective judgments“ about associative relationships „as much as possible“
to avoid inconsistencies.

It was considered to provide a relation "translates" for concepts, which could have been defined
between two concepts, where one concept would have been the exact translation of the other

29

Figure 3.13: Translates relation links between translations of the same concept without a language-
independent concept.

Figure 3.14: Translates relation links between translations of the same concept if a language-
independent concept is used.

concept. Due to the fact that only English is supported in the GlossarySystem and due to the
problems described below, this relation has been omitted.

Another point of extension of the GlossarySchema could be the Language enum, whereby
additional things have to be taken into account: To add additional languages in future work,
a possibility should be found to relate Concepts that are translations of each other. If, for
example, only the two languages English and German are supported, a simple translates relation
between two concepts would be a sufficient solution. However, in a multinational organisation
such as ESA with 22 member states[1], the support of several languages in a glossary used for
different projects could be useful or even necessary. However, if such translation would be
realized as a simple Concept-self-relation as, for example, the HasWhole relation, increasing
the number of languages would require increasing the multiplicities of the translates relation.
Thus, there would be a translates relation between each Concept in a specific language and
each other Concept that represents a translation for that Concept in another language as,
for example, in Figure 3.13 for 6 languages. For n languages, this would be n ∗ n−1

2 translates
relations, which does not seem to be a good solution.

A solution to overcome this problem could be to create some sort of language-independent
concept for each concept and, in addition, a further concept for each translation of the concept,
including a translates relation to the language-independent concept. That would reduce the
number of translates relation links to a maximum of the number of languages (assuming that
there is a single concept representing the translation into a single language), as shown in figure
3.14.

To define the constraints of the GlossarySchema, the Object Constraint Language (OCL) [5] could
have been used. OCL could have been useful, since it is more formal and precise than text

30

in natural language. Further, it can be used for code generation [5] and free tools exist for
that, e.g. Eclipse OCL [9]. However, the constraints of the GlossarySchema were not defined in
OCL, because OCL is much less intuitive than text written in natural language, which would
make the GlossarySchema much more difficult to read. In addition, the GlossarySchema was
translated into the TGraph syntax by hand, and JGraLab does not support OCL. Since the use
of OCL could therefore not be used for code generation, its usage would not have been an
advantage. But possibly OCL could be useful in further development of this work.

Some further potentially useful elements and relations could have been added to the Glos-
sarySchema. However, some elements and relations have not been added so as not to make the
GlossarySchema too detailled and thus incomprehensible.

3.8 Related work for GlossarySchema elements

This chapter briefly describes some approaches from the literature, which are similar to ap-
proaches of the GlossarySchema, but were not used as inspiration, but solved differently.

Z39.19:2005 [2] names qualifier (defining terms noted in parentheses behind terms) as a way to
distinguish homographs (as already described a special homonym with different meaning and
pronounciation, but same spelling; in the GlossarySchema homographs are not distinguished
from other forms of homonymy). Example: Mercury (metal) and Mercury (planet). With the Glos-
sarySchema, this is realized by generating and assigning different Concepts and Contexts for
the same Term in the GlossarySchema. With regard to the example given in Z39.19:2005 [2]:
The Term Mercury would be assigned two corresponding Concepts. In addition, one of these
Concepts could be assigned to a Context metal, the other to a Context plantes.

Furthermore, Z39.19:2005 [2] names scope notes („A note following a term explaining its cover-
age, specialized usage, or rules for assigning it.“). The purposes for scope notes described in
Z39.19:2005 [2], section 6.2.2, however, are implemented in the GlossarySchema as follows:

• If a Term has different applications, a new Concept is added.

• The distinction between Terms that have overlapping meanings in natural language is
handled by the separation of Terms and Concepts.

• An advice for Term usage is given through providing preferred terms.

For the term illumination, which is exemplarily listed in Z39.19:2005 [2], section 6.2.2, 3 different
Concepts with corresponding Contexts would be created in a glossary derived from the
GlossarySchema.

Z39.19:2005 [2], section 6.3.2 states that concepts can be grouped into general types, e.g. paint-
ing and sweing are activities or processes and birthdays and civil wars are occurrences. In the Glos-
sarySchema, such general types can be expressed by Contexts.

31

32

Chapter 4

The GlossarySystem

The GlossarySystem is a program developed in the scope of this work that implements the Glos-
sarySchema described in chapter 3 and makes its features accessible through providing useful
functionalities. It provides the possibility to create, edit and search glossaries based on the
GlossarySchema.

The structure of this chapter is as follows: First, the use cases for the system are presented
and explained. The detailled requirements to the GlossarySystem can be found in appendix B.
Then, the architecture and implementation details of the GlossarySystem and the single meth-
ods of the GlossaryAPI (the central interface of the GlossarySystem) are introduced. The ful-
fillment of the constraints of the GlossarySchema are listed and detailly explained in appendix
C. Then, the Prototypical GlossarySearcher (a user interface that uses the GlossarySystem) is pre-
sendet. After that, some remaining work to the GlossarySystem and the Prototypical Glossary-
Searcher is enumerated. Finally, some further remarks on the GlossarySystem are mentioned.

4.1 Use Cases

4.1.1 Use Cases for the role User

Search Concept

If a user wants to search for a concept in a glossary, he should first set the current context (see
Set Current Context) using its unique identifier. Then he passes a search term that is (probably)
contained in the concept’s preferred term or in an abbreviation of the preferred term or in one of
the concept’s synonyms (or in the synonym if the concept just has one) or in an abbreviation of
one of its synonyms or in the concepts definition or in one of the concept’s example sentences or
in the concept’s source. In response, he receives a list from the GlossarySystem containing all
concepts that contain the passed search term in one of these elements and are simultaneously
in the current context.

The concepts in the list are ordered according to their particular nesting distance to the current
context. If this nesting distance is the same for two or more concepts, these concepts are sorted
according to the position of the passed search term in their components. The priority is as
follows: preferred term or an abbreviation of a preferred term, definition, synonyms or an
abbreviation of a synonym, example sentences, source. If this position is also the same for

33

Figure 4.1: Use cases for the GlossarySystem.

34

Figure 4.2: An exemplary search for a concept with the term “AOCS”.

two or more concepts, these concepts are sorted alphanumerically according to their preferred
terms.

The user then selects a concept from the list from which he wants to get details displayed.

When passing a search term, upper and lower case and leading and trailing whitespaces of
this search term do not play a role. For example, “AOCS”, “Ao cs” and “aOcs” all return the
corresponding concept with the synonym “AOCS”.

In addition, it is possible to filter the returned concepts by the part of speech of the concept’s pre-
ferred term and the concept’s synonyms and/or to search only specific elements of the concept
for the passed search term. For example, it is possible to return only such concepts that have at
least one preferred term or synonym of type noun1 or to search only preferred terms and their
abbreviations and definitions of the concepts for the passed search term.

The GlossarySystem also allows searching for a concept without specifying the current con-
text. In this case, the GlossarySystem returns all concepts associated within any contexts, as
long as the other passed parameters match these concepts as stated above. Furthermore, the
GlossarySystem allows to search only for concepts that are contexts.

An additional, useful function of the GlossarySystem is that all concepts, contexts, terms, ab-
breviations, homonyms and synonyms contained in a glossary can be output and displayed. In
the prototypical implementation in the scope of this work, this is limited to a certain number
of concepts respectively contexts respectively terms per call.

1(all preferred terms and synonyms of a concept should be of the same part of speech)

35

View Concept Details

View Concept Details is the next step following Search Concept: The user is shown all details of
the concept that was searched for. These include the definition of the concept, it’s
preferred term and it’s synonyms, example sentences, the language of the definition and the
example sentences, it’s source, and contexts associated with the concept and relations to other
concepts. Possible relations to other concepts are the hierarchical relations part-whole relation
and instance relations and the associative relations common associative relation and antonymy rela-
tion. Thus, another concept may be a child, parent, part, whole, subtype, supertype, related concept
or antonym to the concept.

contexts are special concepts that serve as containers for concepts and other contexts. For con-
texts, all associated contexts and bad terms are shown in addition to the other concept elements
mentioned above.

Browse Glossary

Browse Glossary is a possible extension of View Concept Details facilitating navigation through
the glossary using concepts and contexts: If, for example, a concept is selected which has an
antonymic relationship to the originally searched concept, again its details can be shown. The
same applies to contexts in which the searched concept is contained. In addition, the concepts
and contexts and their details of the associated contexts and related concepts and again their
associated contexts and related concepts and so on can be displayed.

Set Current Context

When creating an artifact in the RE, e.g. writing requirements or modelling a sequence dia-
gram, one is always in a certain context (which is called the current context). This current context
is usually implicit clear to the person creating the artifact (abstracted in the GlossarySystem by
the role user). For example, in the requirement KR-MIS-070 of the ESA CHEOPS Mission System
Requirements Document [21] („KR-MIS 070 The CHEOPS spacecraft shall perform the nominal
operations in a circular Sun-Synchronous Orbit (SSO).“), the concept behind the term space-
craft is implicitely in the context CHEOPS mission. However, in the requirement SRD-MIS-2
of the Euclid System Requirements Document [22] („SRD-MIS-2 Spacecraft consumables shall be
sized for 7 years in orbit.“), the concept behind the term spacecraft is implicitely in the context
Euclid mission. To get the the intended concept from the glossary the user must first tell the
GlossarySystem about the current context.

For setting the current context, this context must first be searched in the glossary to be sure that
this context is already part of the glossary. This works either as described in Search Concept
(with the difference that only concepts are returned that are contexts) or through passing the
unique identifier of the context to the GlossarySystem, if it is known. If the first way is choosen
to search for the context and if the GlossarySystem returns more than one context, the user
must select the intended context.

Then, this context can be used to pass it as current context when searching for a concept. Ex-
ternal systems could also query the current context and cache it and use it every time a search
is performed, until the user changes this current context.

Set Current Context is an important part of Search Concept to get meaningful results.

36

Figure 4.3: Setting the context CHEOPS as the current context.

Replace Homonym

For the reasons explained in Chapter 3.1, homonyms should be avoided in the glossary, de-
spite the fact that, due to the GlossarySchema, they can be presented in such a way that the
risk of ambiguity is significantly reduced. For this reason, using the GlossaryAPI, the Proto-
typical GlossaryEditor (and hopefully other external systems) provide a function to detect and
gradually remove all homonyms. At the push of a button, all homonyms in the glossary are
displayed. These can then be removed step by step by renaming the individual terms.

4.1.2 Use Cases for the role Editor

Manage Concept

Manage Concept includes creating, editing, deleting, converting, and linking a concept.

To create a concept, the user must at least specify a definition and a preferred term for the new
concept. Additionally, he can specify a status, an arbitrary number of synonyms, a language, a
source, an arbitrary number of example sentences.

Then the new concept has to be assigned to at least one context and can be assigned to an
arbitrary number of contexts. Before doing this, this context must be either searched in the
glossary or redefined. The first version of the GlossarySystem only supports transitive context
assignments.

It is also possible to relate the concept to an arbitrary number of other concepts. Possible rela-
tions can be found in the description of the use case View Concept Details. Before doing this,
this concept must also be either searched in the glossary or redefined.

37

Figure
4.4:A

n
exem

plary
creation

ofa
new

conceptartificialsatellite.

38

To edit a concept, Search Concept and View Concept Details must be executed first. Then,
every detail of the returned concept can be edited, including the concept’s definition, preferred
term, synonyms, status, language, source, example sentences, contexts and relations to other
concepts (that are listed in View Concept Details).

To delete a concept, the concept must first be searched in the glossary. When deleting the con-
cept, the GlossarySystem also deletes all context assignments of this concept and all relations
of this concept to other concepts.

Since contexts are special concepts, it is possible to convert a concept into a context if this
concept should additionally be used to group concepts and/or other contexts.

In addition, it is possible to add a direct linking from a term in a textual artifact and the cor-
responding concept stored in the GlossarySystem. For example, the links in this section to the
textual glossary (only visible in the PDF version of this document) could lead to the associated
concept in the glossary, where the preferred term or one of the synonyms of this concept being
the link text in this document.

Manage Context

As already mentioned, contexts serve as containers for concepts and other contexts. Manage
Context is very similar to Manage Concept since contexts are special concepts. Manage Context
includes creating, editing, and deleting a context.

There are only few differences between creating, editing and deleting contexts and concepts:
When creating a context, concepts and other context can be added to this context, additionally.
The same is true for editing a context. Additionally, when editing a context, the associations to
other contexts and concepts that are contained in this context can be deleted. When deleting a
context, the GlossarySystem deletes all associations to all other concepts and contexts before
the context itself is deleted.

A context can have a list with so called bad terms that should not be used in this context. Such
bad terms can be added when creating or editing a context and the relations to the particular
terms are deleted when deleting the context.

Since contexts are special concepts, it is possible to convert a context into a concept if it’s mean-
ing should further be used but if it no longer contains any concepts or other contexts.

Import Concept

As soon as a user searches for a concept using a search term, the WordNet [32] is also searched.
Results from the WordNet are fallback results, which means that the search functions of the
GlossarySystem always output content from the WordNet after all matching glossary content
whose source is not the WordNet. Search results from the WordNet are especially interesting if
there is no concept in the glossary matching the search term.

The GlossarySystem does include search results from the WordNet into the glossary as soon as
the matching concept matches passed search terms a predefined number. Previously, matching

39

concepts from the WordNet are only displayed without adding them to the glossary. The com-
plete WordNet is not read in and mapped to the GlossarySchema, as this would be too much
effort due to the size of the WordNet.

Searching the WordNet when performing a search can be turned on and off by the user of the
Prototypical GlossaryEditor.

Check Glossary Quality

The GlossaryAPI provides functionalities that can be used to check the quality of a glossary.
One of those quality checks consists in the check for homonymous terms, which is part of
the use case replace homonym. Another quality check is the search for isolated contexts (contexts
that do not contain any concept) and for isolated terms (terms that are neither used as preferred
terms or synonyms of a concept, nor as bad terms of a context). A further quality check could
consist in building some metrics considering the last update date of the glossary and/or the
searchFrequency attribute.

4.2 Implementation of the GlossarySystem

In this section, the structure and functionalities of the implementation of the GlossarySystem
are described.

The naming of Element and its subclasses used in the GlossarySystem slightly deviates from
the names in the GlossarySchema (see figure 3.1) in that Element itself and all its subclasses
are named with a trailing “Element”. This was done because of the layered architecture used
in the GlossarySystem (which is explained below) and omitted in the graphical representation
of the GlossarySchema for reasons of legibility.

Besides, when it is spoken of “the graph” in this section, the glossary stored in the GlossarySys-
tem in the TG file persisting format is meant.

4.2.1 Description of the architecture of the GlossarySystem

The GlossarySystem was implemented using the Java programming language. The implemen-
tation is not a closed program, but supports its functionalities to external programs via the
central application programming interface (API) GlossaryAPI.

The GlossarySystem is implemented on four different layers: A database/persistence layer, a busi-
ness logic layer, and an application layer. The fourth layer in this layer architecture, the pre-
sentation layer, is realized by external systems using the GlossaryAPI, and by the Prototypical
GlossaryEditor, which is described later. Figure 4.5 provides an overview over this four layers
and its packages and classes in the GlossarySystem source code.

Instead of directly converting the modelled classes of the GlossarySchema to Java code and
providing objects of these classes to users of the GlossaryAPI, the following was done:

The classes and associations of the GlossarySchema are used on the database/persisting layer
of the GlossarySystem. The GlossarySystem uses the code generator functionality of JGraLab,

40

Figure 4.5: An overview over the different layers of the GlossarySystem and its packages and classes.

41

the Java Graph Laboratory, to create all the classes and associations that are modelled in the Glos-
sarySchema. For that, JGraLab uses the hand-written file GlossarySchema.tg which is the
translation of the UML representation of the GlossarySchema (see figure 3.1) to the TGraph
syntax representation of the GlossarySchema. This allows an explicit representation and type-
safety usage of all Elements and relations of the GlossarySchema in the GlossarySystem. The
GlossarySchema classes are generated to the package de.uni_koblenz.glossary_system
.persistence.tgraph.schema through executing the file build.xmlwhich uses the build
management tool Apache Ant [8] for the build process. Both GlossarySchema.tg and the
build.xml can be found in the root directory of the GlossarySystem’s project directory.

The class GlossaryAPIImpl is on the application layer and implements the GlossaryAPI.
Its constructor is inaccessible to the outside. An object to access the methods of the GlossaryAPI
can only be created via the method createGlossaryAPI of the class GlossaryAPIFactory.
This method takes two parameters: The filename from where the persisting format file (TG
file) to operate on should either be loaded or saved (depending on the next parameter), and
the information whether either an existing glossary should be loaded (value false for the pa-
rameter newGlossary) or a new glossary should be created (value true for the parameter
newGlossary). createGlossaryAPI calls both the GlossaryAPIImpl and the
TGraphGlossaryStorage constructor. Both classes GlossaryAPI and GlossaryAPIFactory
can be found in the package de.uni_koblenz.glossary_system.logic in the src direc-
tory of the GlossarySystem’s project directory.

The main task of GlossaryAPIImpl is to check input parameters of the methods provided
by the GlossaryAPI and to convert Entity objects (of the classes generated by JGraLab on
the basis of the GlossarySchema) to data transfer objects (DTOs - objects that are returned by
the GlossaryAPI) and vice versa. The complex search methods of the GlossaryAPI are imple-
mented in the class BusinessFunctions, which realizes (a big part of) the business logic
layer (the calculation of the nesting distance (which is explained later in this section) and of
homonymous and synonymous terms is realized in TGraphGlossaryStorage because in
this class, these things can be calculated closer to the graph and therefore more efficiently).
GlossaryAPIImpl accesses the methods of BusinessFunctions. Methods that calculate
some complex stuff that are added in future work to the GlossarySystem should also be imple-
mented in BusinessFunctions.

With GlossaryAPI, the facade pattern [10] is used in the GlossarySystem, hiding the internal
complexity and functionality of the GlossarySystem. The aim of this is that the methods pro-
vided by the GlossaryAPI are as useful as possible for the intended application context and
do not depend on the internal persistence structure. For example, it is possible to abstract a
synonym merely as a list entry of a Term data transfer object (DTO) in a ConceptDetails
DTO instead of, as in the GlossarySchema, as a relation class between ConceptEntity and
TermEntity. In addition, the GlossarySchema and the GlossaryAPI can be changed inde-
pendently of each other in this way, which considerably increases the flexibility and maintain-
ability of the GlossarySystem.

Several facades could access the class BusinessFunctions. Because different facades may
use different GlossaryStorages, a GlossaryStorage object is given to each method of
BusinessFunctions instead of BusinessFunctions storing a GlossaryStorage object
centrally (which would then have to be from a specific GlossaryStorage). Both
BusinessFunctions and GlossaryAPIImpl access GlossaryStorage.

Entity objects returned by the code generated by JGraLab on the basis of the GlossarySchema
are quite powerful: As soon as a method of an Entity is called, the content of the corresponding

42

element in the persistence format is also changed. In contrast to that, the GlossaryAPI provides
small functions and returns so-called data transfer objects (DTOs) that can be used and manip-
ulated by external systems without immediately changing the graph. These DTO classes are
tailored to the specific methods of the GlossaryAPI. All DTO classes of the current implementa-
tion of the GlossaryAPI are shown in figure 4.6. A change to a DTO only affects the persistence
format if the DTO is passed as a parameter to an edit method of the GlossaryAPI.

The code generated by JGraLab on the basis of the GlossarySchema also contains helpful meth-
ods to query and manipulate the generated graph that are internally used in the GlossarySys-
tem. The GlossarySystem performs necessary checks of input parameters of the methods of the
GlossaryAPI and enables an increase in efficiency due to the intermediate storage of calculated
search results.

The only persistence format that the system currently uses is TGraph files. These are accessed
and manipulated via a further internal interface named GlossaryStorage (which is on the
database/persistence layer and also implements the abovely mentioned facade pattern [10]).
The methods described in GlossaryStorage are implemented by the data access object (DAO)
class TGraphGlossaryStorage. This class operates on the TGraph files using the function-
alities of the JGraLab library. It is currently the only DAO class of the GlossarySystem.

The reason why the internal persistence/database layer of the GlossarySystem was also re-
alized with the help of the facade pattern is to make it possible to access further persisting
formats in future work, e.g. a SQL database. If this were done, another DAO class would have
to be created, which converts database queries (e.g. SQL queries) into Entity objects and vice
versa.

In addition, an additional GlossaryAPIFactory class would have to be added for each ad-
ditional persistence format since the factory must call the constructor of a specific DAO class.

4.2.2 Description of the methods provided by the GlossaryAPI

In the following, the single methods of the GlossaryAPI are described in detail.

Many methods of the GlossaryAPI return lists of DTOs. In the prototypical implementation, the
number of DTOs in these lists is limited to a fixed number, realized by the MAX_INT constant of
the GlossaryAPI interface: For example, a frequently occurring search term passed to one of
the search functions of the GlossaryAPI or calling the method getAllConcepts(), applied to
a large glossary could return a very large number of elements. For example, it is not reasonable
in terms of resources to output 100.000 matching concepts in a single list. In future work, a bit
by bit output of elements for the methods of the GlossaryAPI returning lists should be realized.

Search methods

The GlossaryAPI provides four search methods, two for concepts and two for contexts. With
the aid of these search methods, it is possible to search for concepts respectively contexts
passing a searchTerm, the information which elements of the concepts of the glossary should be
searched for this search term, the current context and the part of speech that should apply to
the part of speeches of the preferred terms and synonyms of the returned concepts. Possible

43

Figure
4.6:C

lasses
for

creating
data

transfer
objects

(D
TO

s)for
the

G
lossaryA

PI.

44

elements that can be searched for the search term are: the concept’s preferred term and abbrevia-
tions of this preferred term, its definition, it’s synonyms and abbreviations of these synonyms, its
example sentences and its source.

The list of the concepts respectively contexts returned by these search methods is sorted in
ascending order according to the nesting distance2 between the past current context and the
concepts of the list. This nesting distance between a current context Ct and a concept C is
calculated as follows:

• If C itself is the current context, the nesting distance is 0.

• If C is more specific than Ct (meaning that C is contained in Ct or in one of the direct or
transitive subcontexts of Ct), the nesting distance is a negative number corresponding to
the number of edges (single ContainsConcept relations) between Ct and C.

• If C is more common than Ct (meaning that C itself is a context and that Ct is contained
directly or transitively in C), the nesting distance is a positive number corresponding to
the number of edges (single ContainsConcept relations) between Ct and C.

• The nesting distance is infinity3 if C and Ct are neither directly nor transitively connected
through a ContainsConcept relation.

The nesting distance of a concept to the current context represents the potential relevance of
this concept to a user in this particular context. Thus, the GlossaryAPI returns concepts with a
smaller nesting distance to the current context first, since they are most likely more relevant for
the searcher. Being in a context or being in the current context means that the more direct a concept
is contained in this context, the more likely it is to be returned. This is especially relevant since
the output of the number of elements of functions in the prototypical implementation of the
GlossarySystem is not done bit by bit but is limited by a fixed value.

If the nesting distance is the same for two or more concepts, these concepts are sorted accord-
ing to the point of occurrence of the search term in one of the abovely described elements of
the concepts. The priority is as follows: preferred term or an abbreviation of a preferred term,
definition, synonym or an abbreviation of a synonym, example sentences, source.

If this point of accourrence is also the same for two or more concepts, these concepts are sorted
alphanumerically according to their preferred terms.

Sorting according to these criteria is very important to get possibly relevant concepts output
first. The sorted output becomes even more important due to the fact that all functions of
the GlossaryAPI only return a fixed number of concepts in the prototypical implementation.
Without proper sorting, highly relevant concepts might be cut off at the bottom of the list,
while less relevant concepts might be at the top.

Get DTO methods

For each data transfer object class shown in figure 4.6, the GlossaryAPI provides a method that
returns a DTO of the type of the respective DTO class using the unique identifier of the corre-
sponing ElementEntity in the glossary. The returned DTOs are assigned the corresponding
values stored in the graph.

2The nesting distance is calculated internally in TGraphGlossaryStorage using the breadth-first search (BFS)
algorithm.

3In the implementation, the nesting distance is set to 1.000.000 in this case.

45

Get all methods

One method each is provided to return all concepts, contexts, terms, abbreviations, homonyms
(terms contained in the glossary that are associated with more than one concept) and synonyms
(concepts contained in the glossary that are associated with more than one term) contained in
the glossary. The returned DTOs are assigned the corresponding values stored in the graph.

Is methods

The GlossaryAPI provides four methods which check whether the transferred unique identifier
belongs to a concept, context, term or abbreviation in the glossary.

Get methods for contains relations between contexts and concepts

The GlossaryAPI provides one method that returns all concepts that are directly contained in
the passed context and another method that returns all contexts in which the passed concept is
directly contained.

Get methods for all hierarchical relations between concepts

The GlossaryAPI provides two methods for each hierarchical relationship type, which return
the child or parent concept to the passed concept.

Get methods for all associative relations between concepts

The GlossaryAPI provides one method that returns all related concept to the passed concept
and another method that returns all antonyms to the passed concept.

Add glossary element methods

The GlossaryAPI provides several methods that allow to add a new concept or context or term
or abbreviation to the glossary. The different methods take different numbers of parameters so
that it is not necessary to pass null as parameters several times when, for example, a concept
with a minimal amount of initial values should be created.

Add relation methods

The API provides one method each, which adds:

• a concept to a context

• a synonym to a concept

• a preferred term to a concept

46

• a hierarchical relation between two concepts, where the relation type is specified by a
parameter

• an associative relation between two concepts, where the relation type is specified by a
parameter

• an abbreviation to a term

In future work, it is planned to add another method that adds a term as bad term to a context.

Edit methods

The GlossaryAPI provides four edit methods, one for concepts, one for contexts, one for terms
and one for abbreviations. Each of this methods takes the unique identifier of a concept or con-
text or term or abbreviation in the glossary and a Concept or Context or Term or Abbreviation
DTO. When calling the particular method with these two values, the values of the concept or
context or term or abbreviation in the glossary corresponding to the passed unique identifier
are overwritten with the values of the passed DTO.

Delete/remove methods

The GlossaryAPI provides one method to remove a GlossaryElement corresponding to the
passed unique identifier from the glossary, and one method each, which removes:

• a concept from a context

• a synonym from a concept

• the preferred term of a concept

• a hierarchical relation between two concepts, where the relation type is specified by a
parameter

• an associative relation between two concepts, where the relation type is specified by a
parameter

• an abbreviation from a term

In future work, it is planned to add another method that removes a term as bad term from a
context.

The method saveGlossary()

The GlossaryAPI provides a method saveGlossary() that saves all changes (additions, edits
and deletions) to the TG persisting file that was specified when creating the method
GlossaryAPIFactory.createGlossaryAPI (see section 4.2.1).

47

4.3 The Prototypical GlossarySearcher

Unfortunately, for time reasons, it was not possible to implement a Prototypical GlossaryEditor
with all functionalities described in the use cases and the requirements within the scope of this
work. Instead, the class PrototypicalGlossarySearcher.java was developed, which
can be found in the package de.uni_koblenz.glossary_system.presentation.

The Prototypical GlossarySearcher allows to load existing glossaries (TG files), to set the current
context, to search the loaded glossary for concepts and to show details of the loaded concepts.
The set current context is kept as current context until it is set again, which implements the use
case Set Current Context. The Prototypical GlossarySearcher allows to search all appropriate
components of a concept for the search term (preferred term or an abbreviation of a preferred
term, definition, synonyms or an abbreviation of a synonym, example sentences, source) or
only the preferred term and the synonyms or only the definition. Furthermore, it is possible
to define that only such concepts can be returned whose preferred terms or synonyms are of
a certain part of speech. Figure 4.7 shows a screenshot of the prototypical GlossarySearcher in
action.

4.4 Future work for the GlossarySystem

This chapter lists functionalities which should be realized in future work on the GlossarySys-
tem.

4.4.1 The integration of the WordNet

Unfortunately, for time reasons, it was not possible to integrate the WordNet into the Glos-
sarySystem as described in the use cases and the requirements within the scope of this work.
This task remains as one of the most important tasks for future work.

The WordNet should be integrated into the GlossarySystem as follows: As API to access the
WordNet, JGWNL (the JGraLab WordNet Library) 2.5 should be used. The GlossarySystem
should connect to JGWNL as a client.

As soon as a user searches for a concept using a search term, the WordNet should also be
searched. Results from the WordNet are fallback results. The search functions of the Glos-
sarySystem always output content from the WordNet after all matching glossary content whose
source is not the WordNet.

4.4.2 Future work regarding the GlossaryAPI

One of the most important remaining tasks that should be done in future work is the imple-
mentation of the not yet implemented constraints of the GlossarySchema. 9 constraints annotated
in the GlossarySchema were implemented in the GlossarySystem, 3 constraints are not auto-
matically checkable (what is noted in the GlossarySchema for the concerned constraints), and
the implementation of the following 3 constraints remains future work:

• „Every combination of term and pos may occur only one time.“

48

Figure 4.7: Example of the usage of the Prototypical GlossarySearcher using the search term “ecss” and
the current context “generic terms”. (In the figure, the TestCaseGlossary (see figure D.1) is
loaded.)

49

• „All synonyms must have the same POS.“

• „If abbreviatedTerms has a value, the values of the attributes pos, number and compound
of the Abbreviation must be equal to the values of the identically named attributes of
all of these abbreviatedTerms. If the abbreviatedTerms of an Abbreviation differentiate
in one or more of their attributes pos, number, compound or language, the following
applies: For every value combination of these attributes, a new Abbreviation object must
be created to fulfill the other Abbreviation constraint.“

Furthermore, regarding constraints, in the prototypical implementation of the GlossarySystem,
when inserting concepts or contexts into other contexts, it is only checked for direct contain-
ment whether the inserted concept or context is inserted into itself. In future work, this should
also be checked for transitive containment (e.g. if a context C1 is inserted into a context C2 that
is again contained in C1, or more complex nestings).

Another quality check that should be implemented in future work is that every concept of a
glossary is contained in at least one context.

According to section 3.4, it is not possible to delete a term, concept or context once it has been
inserted into a glossary derived from the GlossarySchema. However, in the first version of the
implementation of the GlossarySystem, it seems to be useful to also allow the deletion of terms,
concepts and contexts since not allowing to delete a once inserted GlossaryElement seems to be
quite limiting. The strict requirement of only marking terms, concepts and contexts as deleted
could be implemented in further versions. In this context, it might be useful to apply this strict
rule only to GlossaryElements that have or once had the status PUBLISHED.

In this context, could also be future work to restrict the possible changes of status states to
figure 3.9.

Another point that should be part of future work and could become important is the simul-
taneous usability of the GlossarySystem: In the future, the GlossarySystem should be able to
handle multiple users (who may use different external systems) writing to the same glossary
at the same time. This problem was not considered in the prototypical implementation of the
GlossarySystem.

The methods addBadTermToContext and removeBadTermFromContext that are already specified
(commented out) in the GlossaryAPI source code should be implemented.

Two more methods that return the contains relations between contexts and concepts could be
added: One method that returns all concepts that are transitively contained (via intermediate
contexts) in the passed context and another method that returns all contexts in which the passed
concept is transitively contained. The returned concepts or contexts should be sorted according
to the nesting distance to the passed concept or context, as described in section Search Methods.

In the current implementation of the GlossarySystem, the search methods supports exact mat-
ches of passed search terms (through passing searchTerm, partly matches through passing
searchTerm or searchTerm and contains checks through passing *searchTerm*. In
addition, case sensitiviy and leading and trailing whitespaces are ignored. In future work,
further stemming of passed search terms should be supported: diacritical characters, hyphens
and inflections of passed searchTerms should also be ignored.

50

Regarding the search methods of the GlossaryAPI, the search by common misspellings should
also be implemented in future work (compare section 3.5). Common misspellings should not
be output, but only serve to ensure that the correct concept is also output when a user passes a
common misspelling (see also section 3.5).

For the GlossaryAPI, a method isTopConcept could be added that returns true if the associated
concept has at least one child but no parent and false otherwise.

To fulfill Z39.19-2005 [2], section 9.5, the GlossarySchema could provide methods that return
the number of concepts, contexts and preferred terms of the glossary and the date and time of the last
update or the glossary. The number of concepts and contexts in a glossary can already be de-
termined by calling getAllConcepts().size() and getAllContexts.size(). Explicit
functions for determining the respective number could be made more efficient internally, for
example by using GReQL requests in class TGraphGlossaryStorage. However, the last up-
date is a difficult metric: If it is a long time ago, this can mean either that the glossary is not
sufficiently maintained, but also that it is already quite good and therefore no maintenance was
necessary.

In addition, a method getAllProjectSpecificHomonyms(String projectUuid) that
returns all homonyms that belong to the project with the past projectUuid could be added.

Another useful feature that could be supported by the GlossarySystem in future work is the
conversion of concepts into contexts as described in the use case Manage Concept and the conver-
sion of contexts into concepts as described in the use case Manage Context.

Another feature that the GlossarySystem could support is multilingualism for the reasons ex-
plained in section 3.7. Although all enum constants of the enum Language of the Glos-
sarySchema (see figure 3.1) can be used when defining new GlossaryElements, the system is
only designed for the English language. If multilingualism is supported, the GlossarySchema
must also be adapted, as explained in section 3.7. In addition, the ISO standard ISO 25964-2
[13] already mentioned at the beginning of chapter 3 should be consulted.

As already mentioned in chapter 3 in the description about the definition attribute, the pro-
cessing of html markup for definitions and example sentences of concepts should be supported
in future work. For the prototypical implementation of the GlossarySystem in the scope of this
work, it is assumed that the values of these attributes are plaintext only.

Finally, as already mentioned in the introduction of section 4.2.2, a bit by bit output of elements
for the methods of the GlossaryAPI returning lists should be realized for the reasons stated in
the introduction of section 4.2.2.

4.4.3 Future work regarding other system components

The GlossaryAPI already generates meaningful exceptions if parameters are passed to its meth-
ods that make no sense or that violate one of the constraints of the GlossarySchema. Besides
this, further specific exceptions should be defined that are caused by internal errors caused by
wrong input parameters. For example:

51

• If TGraphGlossaryStorage.loadGlossary() throws a GraphIOExceptionwhich
is caused by a FileNotFoundException, the GlossaryAPI should extract the
FileNotFoundException and pass it to external systems instead of passing the
GraphIOException to the outside.

• If GlossaryAPIFactory.createGlossary is passed a non-existent file name,
TGraphGlossaryStorage throws a NullPointerException. Passing something
like a GraphFileNotFoundException to the outside would be nicer.

Future work could also consist of using GReQL in the methods of TGraphGlossaryStorage.
This could help to avoid having to use the functions generated by JGraLab to calculate a large
number of elements from the graph in order to filter only a few elements.

4.4.4 Future work regarding the Prototypical GlossarySearcher

The Prototypical GlossarySearcher is actually not part of the GlossarySystem but an external
system, but due to parallel development it is nevertheless listed as a subsection of this section.

In future work, the Prototypical GlossarySearcher should be developed into the planned Pro-
totypical GlossaryEditor and expanded by functionalities that allow to define, edit and delete
GlossaryElements and to create and save new glossaries.

A further feature that could be integrated is the possibility to replace homonyms, as stated in
the use case Replace Homonym.

Furthermore, the Prototypical GlossaryEditor should be supplemented by a function that prints
the whole glossary to a text and/or PDF file. This output could contain all Concepts of the
glossary alphanumerically sorted according to their preferred terms and further information
like synonyms, Contexts in which the particular Concept is contained and for Concepts that
are Contexts Concepts which are contained in the particular Context.

Another task that could be solved in future work is the direct linking from terms occuring in
textual artifacts to the associated concept in a glossary of the GlossarySystem, mentioned in the
use case Manage Concept. This feature would need some more thought, but would most likely
be part of the presentation layer, so it could be part of the Prototypical GlossaryEditor.

4.5 Recommendations regarding the usage of the GlossarySystem

This section provides some recommendations regarding the usage of the GlossarySystem, main-
ly derived from the requirements and recommendations from Z39.19:2005 [2].

Both van Lamsweerde [14] („to ensure that the same term does not refer to different concepts
and the same concept is not referred to under different terms“) and Z39.19:2005 [2] („a com-
pound term should express a single concept or unit of thought“; „As a general principle of
vocabulary control, terms should represent single concepts [. . .]“) state that terms should re-
fer to a single concept and concepts should be represented by a single term and represent this
rules as very important, central concepts. Due to the strict separation of Terms and Concepts
in the GlossarySchema, it is not necessary to stick to this rules when using the GlossarySystem.

52

However, this decision is primarily the responsibility of Editors of the GlossarySystem. But it
isn‘t a bad idea to do so as the usability of the glossary of terms otherwise depends strongly on
the GlossarySystem.

Due to the strong separation of Terms and Concepts and the possibilities of the Context
system in the GlossarySchema, many recommendations from Z39.19:2005 [2], chapter 6 (Term
Choice, Scope, and Form) do not necessary need to be applied as these recommendations assume
that terms and concepts are more interrelated than they actually are in the GlossarySchema.

According to Z39.19:2005 [2], section 6.4 recommends that the grammatical form of a term
should be a noun or noun phrase, while verbs should not be used alone as terms. Furthermore,
Z39.19:2005 [2] recommends that adjectives and adverbs should be used only under special
circumstances (e.g. for adjectives and adverbs with special meanings, such as legato and staccato
in music). This recommendations also seem to make sense for user of the GlossarySystem who
add project-specific terms to the glossary: Activities (e.g. to distill or to freeze) that occur in a
textual artifact (e.g. a requirement) and whose meaning needs to be defined in the glossary can
be represented by nouns or gerunds (e.g. distillation or freezing).

Z39.19:2005 [2] enumerates multiple criteria for establishing (Z39.19:2005 [2], chapter 7.5) and
splitting (Z39.19:2005 [2], chapter 7.6) compound terms. Like many other recommendations of
the standard, their compliance is the responsibility of users of the GlossarySystem.

According to Z39.19:2005 [2], „controlled vocabulary maintenance personnel“ („users [that]
[...] are likely to be experts in the subject domain of the controlled vocabulary“) „must have
access to all views of a controlled vocabulary and complete information about each term, with
the ability to edit and manipulate term records, cross-references, classification notation, and
hierarchies“. With regard to the corresponding elements and relations of the GlossarySchema,
the GlossaryAPI fulfills this requirement by means of its corresponding functionalities.

Z39.19:2005 [2] recommends that preferred terms should be assigned consistently according to
defined rules. For example, glossary-wide either scientific or other names should be selected
as preferredTerms.

4.6 Further remarks on the GlossarySystem

In the implementation of the GlossarySystem, only transitive contains relations are supported,
which means that every concept C that is contained in a context Ct1 is semantically also con-
tained in all contexts Ct2 in which Ct1 is contained (role name contexts of the
ContainsConcept of the GlossarySchema) and in all contexts Ct3 that Ct1 contains (role
name concepts of the ContainsConcept of the GlossarySchema). No non-constructed ex-
amples for the existence of intransitive contains relationships could be found. However, this
possibility should be available for future implementations.

One of the big advantages of the GlossarySystem is that, due to the layer architecture of the
GlossarySystem, the GlossarSchema can contain details that are not directly implemented in
the GlossaryAPI.

53

For the problematic reasons described in chapter 3, the GlossarySystem does not support stor-
ing a central search frequency, as modelled in the GlossarySystem. Instead, it is recommended
that developers of external systems using the GlossaryAPI store the search frequency locally
to use it for the puropses named in chapter 3. The local search frequency might even be more
interesting, since search terms used individually by a single user could be used. In this way,
the value is not distorted the other search habits of other users.

Z39.19:2005 [2] requires that „[u]nique entities [...] are usually expressed as proper nouns“ and
„[a]postrophes that are part of proper names must be retained“. The GlossarySystem ensures
that unique names are stored exactly as they are entered by the user.

54

Chapter 5

Conclusion

With the developed GlossarySystem and the underlying GlossarySchema, the objective will
be reached to develop glossaries of higher quality that are easier to use and maintain across
projects. The GlossarySchema allows the formal representation of the properties and relations,
the developed GlossarySystem allows an easy, practical and efficient handling of the glossaries,
and the planned and partially implemented Prototypical GlossaryEditor allows a good repre-
sentability and usability of the glossaries.

The relations modeled in the GlossarySchema and implemented in the GlossarySystem are
no longer, as in conventional term definition list glossaries, rather hindering the search for
and understanding of correlations by enlarging the textual definition. Instead, they serve the
understanding of the correlations of the respective concept due to the formal representation
outside the term definition.

Through the development of the GlossarySchema and the GlossarySystem, the research ques-
tions RQ1 - RQ3 listed in section 1.3 could be answered:

The developed GlossarySchema answeres RQ1 (What should a glossary be like that is useful for
requirements engineering?) through explicitely representing homonymy and synonymy, pro-
viding numerous useful properties of terms and concepts and the provided relations between
concepts. Furthermore, is answeres RQ2 (How can contexts be represented in such a glossary?)
through the implemented realization of contexts and the possibility to arbitrarily nest concepts
and contexts in other contexts.

Finally, the development of the GlossarySystem answers RQ3 (How can such a glossary including
contexts be technically implemented?).

Finally, future work should consist of applying the GlossarySystem based on the current Glos-
sarySchema and, if necessary, modifying the functionalities of the GlossarySystem and/or the
underlying GlossarySchema. New methods could be added to the GlossaryAPI or existing
methods that prove to be less useful could be removed. The same applies to properties of
elements and relations between elements of the GlossarySchema.

55

56

Appendix A

Textual Glossary

antonym - the role of a ↑concept (first definition) that has an ↑antonymic relationship to an-
other ↑concept (first definition). Is realized in the ↑GlossarySchema as role name antonyms
of the association class HasAntonym.

antonymy relation - a special ↑associative relation representing that one ↑concept (first defi-
nition) is an ↑antonym (an opposite) of another one, e.g. the corresponding ↑concepts (first
definition) to the ↑terms (second definition) hot and cold. Is realized in the ↑GlossarySchema
as association class HasAntonym.

any character wildcard - The ↑wildcard that is used for “any number of any characters”. The
functions of the ↑GlossarySystem that support wildcards use the character * for this pur-
pose.

associated , associate - If a ↑concept (first definition) or a ↑context A is contained in another
↑context B, B is associated with A and a is associated with B.

associative relation - a relation between ↑concepts (first definition) that defines some kind of
non-↑hierarchical relations between two or more ↑concepts (first definition). Is realized
in the ↑GlossarySchema as association class HasRelatedConcept.

bad term - a ↑term (second definition) that should not be used in a specific ↑context.

child - the role of a ↑concept (first definition) that is subordinate to another ↑concept (first
definition) in a ↑hierarchical relation. Is realized in the ↑GlossarySchema as role name
childs of the association class HasParent.

concept

1. The meaning of at least one ↑term (second definition), represented by a textual defi-
nition and the following useful properties: The concept’s corresponding ↑synonyms
(second definition) and it’s ↑preferred term, illustrating example sentences, the language
of the textual definition and the example sentences, the concept’s ↑hierarchical re-
lations (↑part-whole relations, ↑common instance relations and ↑individual instance rela-
tions) and ↑associative relations including ↑antonymy relations, the ↑contexts in which
the concept is contained and an information about the source of the Concept. Con-
cepts are the central entities of the ↑GlossarySchema and the ↑GlossarySystem and
realized as class Concept in the ↑GlossarySchema.

2. An abstract or general idea inferred or derived from specific instances. [33]

57

common instance relation - a special ↑instance relation between two ↑concepts (first defini-
tion) representing a common ↑supertype/↑subtype relation, e.g. between the correspond-
ing ↑concepts (first definition) to the terms succulent plant and cacti. Is realized in the
↑GlossarySchema through setting the attribute individualInstance of IsARelation
to false.

common subtype - a possible role of a ↑concept (first definition) in an ↑instance relation.

compound term - a ↑term (second definition) whose ↑term (first definition) is composed of
more than one ↑terms (first definition). Consists linguistically of more than one lex-
emes and/or more than two morphemes. Is realized in the ↑GlossarySchema through
the Term’s compound attribute.

concept relation - a relation between two ↑concepts. Can be either a ↑hierarchical relation,
or an ↑associative relation or a ↑contains relation. Is realized in the ↑GlossarySchema as
association class HasConcept.

contains relation - a possible relation between a ↑concept (first definition) or ↑context A and
another ↑context B: A can be either ↑transitively or ↑intransitively contained in B. Is
realized in the ↑GlossarySchema as association class ContainsConcept.

context - a thematic grouping of ↑concepts (first definition) and/or other contexts. A context
can group any number of ↑concepts (first definition) and other contexts. Contexts can be
arbitrarily nested using ↑contains relations and have all the properties of ↑concepts (first
definition). Additional to the contained ↑concepts (first definition) and contexts, a context
can have a list of ↑bad terms. Contexts are special ↑concepts (first definition), thus having
all properties of ↑concepts (first definition). Concepts are realized in the ↑GlossarySchema
as class Concept.

See also ↑contains relation

context association - see ↑associated

current context - The ↑context in which a ↑user is currently mentally located if he/she
searches for a ↑concept (first definition). If, for example, the ↑user formulates require-
ments for a specific project or system, the current context could be the project/system
or a specific part of the project or system. For example, when writing requirements for
the ↑GlossarySystem, either ↑UserAPI or ↑Prototypical GlossaryEditor could be the current
context.

Since the current context is a normal ↑context, all ↑contexts in which the current context is
contained are also implicit current contexts. If the current context is transitively contained
in another context, this even goes further down the context hierarchy (see ↑context).

editor - an extension of the role ↑user. An editor has all the skills of a user and, in addition,
the rights to edit the content of a ↑glossary of the ↑GlossarySystem. See also ↑EditorAPI.

EditorAPI - the part of the ↑GlossaryAPI providing all functionalities which should be exclu-
sively available for the role ↑editor.

external system - a system that uses the ↑GlossaryAPI to provide functionalities based on the
↑GlossarySystem.

glossary , glossary of terms

58

1. A collection of terms and correspondig definitions which represent key ↑concepts
(second definition) of a project or system. It should serve to avoid clashes in ter-
minology, designation and structure and provide a list of accepted synonyms. Fur-
thermore, it should „ensure that the same term does not refer to different concepts
[(homonymy)] and the same concept is not referred to under different terms [(syn-
onymy)]“ [14].

2. A glossary as defined in the first definition created with the ↑GlossarySystem ac-
cording to the ↑GlossarySchema. When created with the GlossarySystem, this is
technically a TG file, but theoretically, a glossary can also be derived as an object di-
agram directly from the GlossarySchema. Due to its structure, a glossary created and
used with the aid of the GlossarySystem makes it even possible to have homonyms
and synonyms without that creating the danger of clashes in terminology, designa-
tion and structure as mentioned in the first definition of glossary.
Is realized as class Glossary in the ↑GlossarySchema.

GlossaryAPI - the Application Programming Interface (API) of the ↑GlossarySystem pro-
viding all functionalities that should be usable by ↑external systems. Consists of the
↑UserAPI and the ↑EditorAPI. The implementation of the GlossaryAPI in the
↑GlossarySystem is not divided into ↑UserAPI and ↑EditorAPI, but implemented as a
single interface “GlossaryAPI”.

GlossarySchema - a schema which can also be described as metamodel that allows to represent
glossaries mainly for the requirements engineering and software projects as thesauri. Is
modelled as UML class diagram and enables the formal representation of properties of
and relations between terms and definitions of a glossary. Is the underlying schema of
the ↑GlossarySystem.

GlossarySystem - a program that implements the ↑GlossarySchema and makes its features
accessible through providing useful functionalities, including the creation, editing and
searching of glossaries based on the GlossarySchema. Provides its functionalities to
↑external systems via the ↑GlossaryAPI.

hierarchical relation - a relation that defines some kind of hierarchy between two or more
↑concepts (first definition). Is divided into ↑part-whole relation and ↑instance relation. Is
realized in the ↑GlossarySchema as association class HasParent.

individual instance relation - a special ↑instance relation between two ↑concepts (first defi-
nition) representing an individual ↑supertype/↑subtype relation, e.g. between the cor-
responding ↑concepts (first definition) to the terms artificial satellite and Sputnik 1. Is re-
alized in the ↑GlossarySchema through setting the attribute individualInstance of
IsARelation to true.

individual subtype - a possible role of a ↑concept (first definition) in an ↑instance relation.

instance relation - a special ↑hierarchical relation between two ↑concepts (first definition)
representing a ↑supertype/↑subtype relation. Is either a ↑common instance relation or
an ↑individual instance relation. Is realized in the ↑GlossarySchema as association class
IsARelation.

intransitively contained - A special ↑contains relation: If a ↑concept (first definition) or
↑context A is intransitively contained in B, this means that A is contained exclusively
in B. See also ↑transitively contained. In addition, the textual definition of B should
be applicable to A and all bad terms of B are also ↑bad terms of A if A is a ↑context.

59

Is expressed in the ↑GlossarySchema using the enum literal INTRANSITIVE. See also
↑transitively contained.

IsA relation - see instance relation

number - the information if a singular and/or a plural is defined for a ↑term (second defini-
tion). Is realized in the ↑GlossarySchema attribute number of the class Term.

one character wildcard - The ↑wildcard that is used for “a single, arbitrary character”. The
functions of the ↑GlossarySystem that support wildcards use the character ? for this
purpose.

parent - the role of a ↑concept (first definition) that is superordinate to another ↑concept (first
definition) in a ↑hierarchical relation. Is realized in the ↑GlossarySchema as role name
parents of the association class HasParent.

part - a possible role of a ↑concept (first definition) in a ↑part-whole relation. Is realized in the
↑GlossarySchema as role name parts of the association class HasWhole.

part-whole relation - a special ↑hierarchical relation representing that one ↑concept (first def-
inition) is ↑part of another one (the ↑whole), e.g. the corresponding ↑concepts (first defi-
nition) to the ↑terms (second definition) chair and leg. Is realized in the ↑GlossarySchema
as association class HasWhole.

preferred term - a ↑synonym (second definition) that is preferentially used to name a concept.
Is realized in the ↑GlossarySchema as role name preferredTerm.

Prototypical GlossaryEditor - a program that uses the ↑GlossaryAPI demonstrating the basic
features provided by the GlossaryAPI. The main purpose of the Prototypical GlossaryEdi-
tor is to demonstrate and evaluate the functionality and the usage of the ↑GlossarySystem.

Prototypical GlossarySearcher - a program that realizes a subset of the planned features of
the ↑Prototypical GlossaryEditor and can be used to load glossaries, set the current con-
text and search the loaded glossaries for concepts and contexts.

related concept - the role of a ↑concept (first definition) that has an ↑associative relation to
another ↑concept (first definition). Is realized in the ↑GlossarySchema as role name
relatedConcepts of the association class HasRelatedConcept.

SHALL - a keyword used in the detailled requirements of the ↑GlossarySystem to identify the
legal obligation of a requirement. A requirement marked with shall is mandatory in the
realization. See also ↑SHOULD.

SHOULD - a keyword used in the detailled requirements of the ↑GlossarySystem to identify
the legal obligation of a requirement. A requirement marked with shall is optional in the
realization. See also ↑SHALL.

simple type - the Java types int, boolean and String.

status - the status of a ↑concept (first definition), ↑context or ↑term (second definition). Possi-
ble statuses are edited, published, archived, submitted, deleted and deprecated. Is realized in the
↑GlossarySchema as attribute status of the enum type Status of the class Element.

subtype - a possible generic role of a ↑concept (first definition) in an ↑instance relation. See
common subtype and individual subtype. Is realized in the ↑GlossarySchema as role
name subtypes of the association class IsARelation.

60

supertype - the role of a ↑concept (first definition) that is superordinate to another ↑concept
(first definition) in an ↑instance relation. Is realized in the ↑GlossarySchema as role name
supertypes of the association class IsARelation.

synonym

1. A ↑term (first definition) which has the same definition as another ↑term (first defi-
nition).

2. A ↑term (second definition) that is used as possible designation of a ↑concept (first
definition). Is realized in the ↑GlossarySchema as role name synonyms.

term

1. A string representing a word. Consists linguistically of at least one lexeme and/or
two or more morphemes. Is realized in the ↑GlossarySchema as Term’s attribute
term. See also ↑compound term.

2. A combination of a string storing a ↑term (first definition) and the further properties
part of speech, the ↑number, the fact if the term is either a ↑compound term or not, the
language, possible abbreviations, and common misspellings. Functions only as a label
for one or more ↑concepts (first definition). Is realized in the ↑GlossarySchema as
class Term. See also ↑compound term.

top concept - a ↑concept (first definition) that is a supertype but itself has no supertypes (see
↑instance relation). In the ↑GlossarySchema, the Concept’s attribute topConcept is
used to express that a Concept is a top concept.

transitively contained - A special ↑contains relation: If a ↑concept (first definition) or ↑context
A is transitively contained in another ↑context B, this means that A is contained in B itself
and in all other ↑contexts C in which B is contained. In addition, the textual defini-
tions of B and C should be applicable to A and all ↑bad terms of B and C are also ↑bad
terms of A if A is a ↑context. Is expressed in the ↑GlossarySchema using the enum literal
TRANSITIVE. See also ↑intransitively contained.

user - a role that represents an average user of the ↑GlossarySystem without further rights to
edit the ↑GlossarySystem. See also ↑UserAPI.

UserAPI - the part of the ↑GlossaryAPI providing all functionalities which should be available
for the role ↑user.

whole - a possible role of a ↑concept (first definition) in a ↑part-whole relation. Is realized in
the ↑GlossarySchema as role name wholes of the association class HasWhole.

wildcard - A character that is a placeholder for a number of other characters. See also ↑any
character wildcard and ↑one character wildcard.

61

62

Appendix B

List of requirements to the
GlossarySystem

Formatting Notes

All terms preceded by an up arrow (↑) are defined in the TextualGlossary.

UA = UserAPI
EA = EditorAPI

B.1 Requirements to the UserAPI

B.1.1 Requirements regarding the use case Search Concept

UA-10 PRIO 1 The UserAPI SHALL provide external systems with the ability to search for
concepts by specifying a search criterion.

UA-20 PRIO 1 One search criterion SHALL be a comparison between the passed string and

a) the concept’s definition.

b) the particular term of the concept’s term.

c) one of the concept’s synonyms

d) the concept’s example sentences

e) the concept’s source

UA-20-1 PRIO 1 If the passed string is compared with one of these elements of a concept, the
passed string SHALL either be contained in or match this element.

UA-50 - UA-80 refer to UA-10 - UA-40.

UA-50 PRIO 1 The UserAPI SHOULD process passed strings ignoring

63

a) case sensitivity of the passed strings.
Example: It should be possible that “aocs”, “AOCS” and “aOcs” are threated equal when
searching for a concept.

b) leading and trailig spaces of passed strings.

UA-60 PRIO 1 The UserAPI SHALL process any character wildcards in passed strings.

UA-70 PRIO 2 The UserAPI SHOULD process one character wildcards in passed strings.

UA-80 PRIO 4 The UserAPI SHOULD remove the HTML markup of

a) term strings of terms
b) definitions of concepts
c) passed strings

before every comparison operation with the corresponding term string, definition or
passed string.

UA-90 a) - c) respectively UA-90-1 - UA-90-3 are further search criterions as mentioned in UA-10.

UA-90 The UserAPI SHALL provide external systems with the ability to search for concepts
passing:

a) PRIO 1 the current context.
b) PRIO 2 a predefined part of speech.

UA-90-1 PRIO 1 If a context was passed as current context, the concepts in the search result
SHALL be ordered in ascending order with reference to the nesting distance to the current
context.

UA-90-2 PRIO 2 If a part of speech was passed, the search result SHALL contain only such
concepts that have at least one preferred term or synonym that is of the passed part of
speech and that contains the passed search term.

UA-100 PRIO 3 The UserAPI SHOULD provide external systems with the ability to get all
concepts stored in a glossary.

UA-110 PRIO 3 The UserAPI SHOULD provide external systems with the ability to get all
terms stored in a glossary.

UA-120 PRIO 2 The UserAPI SHALL limit

a) the returned concepts
(including contexts)

b) the returned terms

to a predefined limit per call.

This also restricts the concepts and terms returned from UA-100 and UA-110 to this predefined
limit per call.

UA-130 PRIO 1 The type of all parameters and results of the UserAPI functions SHALL be
either a simple type, or a data transfer object, or a standard Java collection of those types.

Example for such a collection: List<Concept>.

UA-140 PRIO 1 The UserAPI SHALL ensure that the same concept is returned only once in a
single search request.

64

B.1.2 Requirements regarding the use case Set Current Context

UA-200 PRIO 1 All functions of the UserAPI that provide a search for concepts SHALL pro-
vide the user with the ability to pass the current context.

B.1.3 Further requirements to the UserAPI

UA-210 PRIO 3 The UserAPI SHOULD provide external systems with the ability to link terms
in textual artifacts to concepts in a glossary.

B.2 Requirements to the EditorAPI

B.2.1 Requirements regarding the use cases Manage Concept and Manage Context

EA-10 PRIO 1 The EditorAPI SHALL provide external systems with the ability to create

a) new concepts

b) new contexts

c) new terms

in a glossary.

EA-10-1 PRIO 1 The creation of a concept SHALL encompass

a) the addition of at least one synonym

b) the definition of exactly one preferred term

c) the creation of a definition

d) the specification of a source

e) the addition of a contains relation to at least one context

f) the definition of a status

for the newly created concept.

These are the mandatory elements every concept must contain. This includes the creation of
contexts since contexts are special concepts.

EA-10-1-1 PRIO 1 The EditorAPI SHALL provide external systems with the ability to search
for the term in the glossary that should be used as preferred term for the newly created
concept.

EA-10-1-2 PRIO 1 The EditorAPI SHALL provide external systems with the ability to search
for the terms in the glossary that should be used as synonyms for the newly created
concept.

EA-10-1-3 PRIO 1 The EditorAPI SHALL provide external systems with the ability to search
for the contexts in the glossary that should be associated with the newly created concept.

The concept elements specified in EA-10-2 and EA-10-3 are optional elements of a concept. These
elements are also optional elements for contexts since contexts are special concepts.

65

EA-10-2 PRIO 1 If a new concept is created, the EditorAPI SHALL provide external systems
with the ability to define an arbitrary number of other concepts as

a) childs

b) parents

c) parts

d) wholes

e) common subtypes

f) individual subtypes

g) supertypes

h) related concepts

i) antonyms

to the newly created concept.

EA-10-3 PRIO 1 If a new concept is created, the EditorAPI SHALL provide external systems
with the ability to define an arbitrary number of

a) synonyms

b) example sentences

c) transitively contains relations to other contexts

d) intransitively contains relations to other contexts

for the newly created concept.

EA-10-4 PRIO 1 If a new concept is created, the EditorAPI SHALL provide external systems
with the ability to define the status of the newly created concept.

This includes the status of concepts that are contexts.

EA-10-5 PRIO 1 If a new context is created, the EditorAPI SHALL provide external systems
with the ability to define an arbitrary number of

a) transitively contained concepts

b) intransitively contained concepts

c) bad terms

for the newly created context.

These are optional elements for a context. Further optional elements for a context are specified in
EA-10-2.

EA-20 The EditorAPI SHALL create a unique identifier for every concept, context and term.

EA-30 PRIO 1 The EditorAPI SHALL provide external systems with the ability

a) to edit

b) to delete

the properties and relations of

a) concepts

b) contexts

66

c) terms

of a glossary.

EA-40 PRIO 1 The EditorAPI SHALL ensure that no concept relation is defined between one
and the same concept.

For example, a context may not be contained in itself or a concept may not be a part (see part-whole
relation) of itself.

EA-50 PRIO 2 The EditorAPI SHOULD provide external systems with the ability to convert a
concept into a context.

EA-60 PRIO 2 If a context has no contains relation to another concept, the EditorAPI SHOULD
provide external systems with the ability to convert this context into a concept.

B.2.2 Futher requirements to the EditorAPI

EA-70 PRIO 3 The EditorAPI SHOULD provide external systems with the ability to merge
two glossaries (see glossary) into one glossary.

67

68

Appendix C

Fulfillment of the constraints of the
GlossarySchema in the GlossarySystem

In this appendix, the fulfillment of the constraints of the GlossarySchema in the implementation
of the GlossarySystem are listed and detailly explained.

• The constraints uuid must have a value and the value of uuid must be unique are fulfilled by
the GraphChangeListener of class TGraphGlossaryStorage of the GlossarySystem
generating unique identifiers for every new ElementEntity and HasElement relation
using UUID.randomUuid.toString().

• The constraint definitionmust have a value is fulfilled by the addConcept, addContext,
editConcept and editContextmethods throwing an IllegalArgumentException
if the passed term String (regarding addConcept and addContext) or the term at-
tribute in the passed Concept DTO (regarding editConcept) or Context DTO (re-
garding editContext) has the value null or empty String.

• The constraint term must have a value is fulfilled by the addTerm, addAbbreviation,
editTerm and editAbbreviation methods of the GlossaryAPI throwing an
IllegalArgumentException if the passed term String (regarding addTerm and
addAbbreviation) or the term attribute of the passed TermDTO (regarding editTerm)
or the passed Abbreviation DTO (regarding editAbbreviation) is either null or
the empty String.

• The constraint term must be entire lowercase. Exception: If POS has the value UNIQUE_NAME,
exactly the string is used that the user entered. is fulfilled by the addTerm methods of the
GlossaryAPI converting passed term strings to lowercase if the passed part of speech
(POS) has another value than POS.UNIQUE_NAME and the method editTerm of the
GlossaryAPI converting term strings of passed Term DTOs to lowercase if the POS of
the Term DTO has another value than POS.UNIQUE_NAME.

• The constraint HasWhole is only applicable between Concepts whose related Terms are
nouns is fulfilled by the addHierarchicalRelationmethod of the GlossaryAPI throw-
ing a GlossarySystemException if a relation of type HasWhole should be created
and one of the preferred terms or synonyms of one of the passed concepts between which
the relation should be created has neither the type POS.NOUN, nor one of its subtypes
POS.NON_COUNT_NOUN or POS.UNIQUE_NAME.

69

• The constraint an Abbreviationmay only be selected as preferred term if the Abbreviation
has not more than one abbreviated term is fulfilled by the method addPreferredTermToConcept
of the GlossaryAPI throwing a GlossarySystemException if the passed termUuid
belongs to the unique identifier (UUID) of an abbreviation in the glossary and this abbre-
viation abbreviates more than one term.

• The constraint numbermust be NONE for all Terms with POS not in { NOUN, NON_COUNT_NOUN,
VERB } is fulfilled by the addTerm and addAbbreviation methods and the meth-
ods editTerm and editAbbreviation of the GlossaryAPI automatically converting
the Number of the added or edited term or abbreviation to Number.NONE if the part
of speech of this term or abbreviation is something different than null, POS.NOUN,
POS.NON_COUNT_NOUN or POS.VERB.

• The constraint compound can only be true if pos has either the value NOUN or UNIQUE_NAME
is fulfilled by the addTerm and addAbbreviationmethods and the methods editTerm
and editAbbreviation of the GlossaryAPI automatically setting the compound of the
added or edited term or abbreviation to false if the part of speech of this term or abbrevi-
ation is something different than null, POS.NOUN or POS.UNIQUE_NAME.

70

Appendix D

Test Case Glossaries

To test the GlossarySystem, three main test case glossaries have been used in the JUnit tests.
These are listed below as object diagrams. For reasons of readability, the relations of the sample
object diagrams are represented as simple associations rather than displaying an object for
every association class.

In the GlossarySystem, each TG file corresponding to one of the diagrams below and used for
the JUnit tests is generated by a corresponding class in the package
de.uni_koblenz.glossary_system.glossary_creator.

71

Figure
D

.1:TestC
aseG

lossary:The
glossary

used
for

m
ostofthe

testcases.

72

Figure D.2: TestCaseGlossary2: Used in the tests of the search concept methods of the GlossaryAPI.

73

Figure D.3: TestHierarchicalRelationsGlossary

74

Fi
gu

re
D

.4
:T

es
tA

ss
oc

ia
ti

ve
R

el
at

io
ns

G
lo

ss
ar

y

75

76

Bibliography

[1] European Space Agency (ESA). Member States & Cooperating States. https://www.esa.
int/About_Us/Corporate_news/Member_States_Cooperating_States. last
retrieved on November 10., 2019.

[2] ANSI/NISO Z39.19-2005 (R2010) - Guidelines for the Construction, Format, and Management
of Monolingual Controlled Vocabularies (NISO - the National Information Standards Orga-
nization). 2005. URL: https://www.niso.org/publications/ansiniso-z3919-
2005-r2010 (visited on 10/18/2019).

[3] Daniel M. Berry, Erik Kamsties, and Michael M. Krieger. From Contract Drafting to Soft-
ware Specification: Linguistic Sources of Ambiguity. 2003.

[4] Daniel Bildhauer, Tassilo Horn, and Volker Riediger. JGWNL - JGraLab WordNet Library
API documentation and manual. Tech. rep. University of Koblenz-Landau, Sept. 2008.

[5] Tony Clark and Jos Warmer. Object Modeling with the OCL. Springer-Verlag, 2002.

[6] ECSS Secretariat ESA-ESTEC Requirements & Standards Division. ECSS Glossary of Terms
(ECSS-S-ST-00-01C). 2012.

[7] ECSS Secretariat ESA-ESTEC Requirements & Standards Division. Space engineering -
Technical requirements specification. 2009.

[8] Apache Software Foundation. Apache Ant Website. https://ant.apache.org/. last
retrieved on January 26., 2020.

[9] The Eclipse Foundation. Eclipse OCL (Object Constraint Language) website. https://
projects.eclipse.org/projects/modeling.mdt.ocl. last retrieved on Novem-
ber 11., 2019.

[10] Erich Gamma et al. Design Patterns CD - Elements of Reusable Object-Oriented Software.
Addison Wesley Longman, Inc., 1998.

[11] Martin Glinz. A Glossary of Requirements Engineering Terminology. 2014.

[12] ISO 25964-1:2011(E) The International Standard for Thesauri and Interoperability with other
Vocabularies - Part 1: Thesauri for Information Retrieval (ISO - The International Standards
Organization). 2011. URL: https://www.niso.org/schemas/iso25964 (visited on
09/02/2019).

[13] ISO 25964-2:2013(E) The International Standard for Thesauri and Interoperability with other
Vocabularies - Part 2: Interoperability with other Vocabularies (ISO - The International Stan-
dards Organization). 2013. URL: https://www.niso.org/schemas/iso25964
(visited on 09/02/2019).

[14] Axel van Lamsweerde. Requirements Engineering. A John Wiley and Sons, Ltd., Publica-
tion, 2009.

[15] Module Manual help page. https://ist.uni-koblenz.de/MoMa/help;MOMA2SID=
bf5ea5f15134823dbe002868896b. last retrieved on October 08., 2019.

77

https://www.esa.int/About_Us/Corporate_news/Member_States_Cooperating_States
https://www.esa.int/About_Us/Corporate_news/Member_States_Cooperating_States
https://www.niso.org/publications/ansiniso-z3919-2005-r2010
https://www.niso.org/publications/ansiniso-z3919-2005-r2010
https://ant.apache.org/
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://www.niso.org/schemas/iso25964
https://www.niso.org/schemas/iso25964
https://ist.uni-koblenz.de/MoMa/help;MOMA2SID=bf5ea5f15134823dbe002868896b
https://ist.uni-koblenz.de/MoMa/help;MOMA2SID=bf5ea5f15134823dbe002868896b

[16] National Aeronautics and Space Agency Scientific and Technical Information Program
(NASA STI). NASA thesaurus. https://www.sti.nasa.gov/thesvol1.pdf. 2012.

[17] Oxford English Dictionary webinterface. https://www.lexico.com/en. last retrieved
on November 15., 2019.

[18] Dr. Volker Riediger. lecture Informatik für IM III - Softwaretechnik. University of Koblenz-
Landau, 2017.

[19] ECSS Secretariat. Space engineering Thermal control general requirements. European Coop-
eration for Space Standardization (ECSS), 2008.

[20] Die SOPHISTen. MASTeR - Schablonen für alle Fälle. SOPHIST GmbH. 2013.

[21] CHEOPS Project Team. CHEOPS System Requirements Document. European Space Re-
search and Technology Centre, 2013.

[22] Euclid Project Team. Euclid System Requirements Document. European Space Research and
Technology Centre, 2012.

[23] FLEX Team. FLEX Space Segment Requirements Document. European Space Research and
Technology Centre, 2017.

[24] GMES Sentinel-1 Team. GMES Sentinel-1 System Requirements Document. European Space
Agency, 2006.

[25] JUICE Project Team. JUICE - Jupiter Icy Moons Explorer Space Segment Requirements Docu-
ment. European Space Research and Technology Centre, 2014.

[26] PLATO Project Team. PLATO System Requirements Document. European Space Agency,
2017.

[27] PROBA-V Team. PROBA Vegetation System Requirements Document. European Space Agency,
2008.

[28] The JGraLab Team. JGraLab GitHub page. https://github.com/jgralab/jgralab.
last retrieved on January 26., 2020.

[29] The JGraLab Team. JGraLab TGraphs Wiki Page. https://github.com/jgralab/
jgralab/wiki/TGraphs. last retrieved on January 26., 2020.

[30] The JGraLab Team. JGraLab Wiki. https://github.com/jgralab/jgralab/wiki.
last retrieved on January 26., 2020.

[31] Winfried Ulrich. Wörterbuch Linguistische Grundbegriffe. Berlin: Gebrüder Borntraeger, 2002.
ISBN: 3-443-03111-0.

[32] WordNet home page. https://wordnet.princeton.edu/. last retrieved on October
03., 2019.

[33] WordNet webinterface. http://wordnetweb.princeton.edu/perl/webwn. last
retrieved on November 13., 2019.

78

https://www.sti.nasa.gov/thesvol1.pdf
https://www.lexico.com/en
https://github.com/jgralab/jgralab
https://github.com/jgralab/jgralab/wiki/TGraphs
https://github.com/jgralab/jgralab/wiki/TGraphs
https://github.com/jgralab/jgralab/wiki
https://wordnet.princeton.edu/
http://wordnetweb.princeton.edu/perl/webwn

	Introduction and problem description
	Problems with current glossaries
	Short analysis of glossaries of ESA System Requirements Documents (SRDs)
	Research Questions
	System Vision
	Problems with current glossaries of terms
	Solutions provided by the system to be developed

	Basics
	Theoretical background to glossaries
	JGraLab
	TGraphs
	WordNet
	JGraLab WordNet Library (JGWNL)

	The GlossarySchema
	Terms and Concepts
	Concept properties that are no self-relations
	Relations between Concepts
	Properties for both Concepts and Terms
	Properties for Terms
	Contexts
	Further aspects of the GlossarySchema
	Related work for GlossarySchema elements

	The GlossarySystem
	Use Cases
	Use Cases for the role User
	Use Cases for the role Editor

	Implementation of the GlossarySystem
	Description of the architecture of the GlossarySystem
	Description of the methods provided by the GlossaryAPI

	The Prototypical GlossarySearcher
	Future work for the GlossarySystem
	The integration of the WordNet
	Future work regarding the GlossaryAPI
	Future work regarding other system components
	Future work regarding the Prototypical GlossarySearcher

	Recommendations regarding the usage of the GlossarySystem
	Further remarks on the GlossarySystem

	Conclusion
	Textual Glossary
	List of requirements to the GlossarySystem
	Requirements to the UserAPI
	Requirements regarding the use case Search Concept
	Requirements regarding the use case Set Current Context
	Further requirements to the UserAPI

	Requirements to the EditorAPI
	Requirements regarding the use cases Manage Concept and Manage Context
	Futher requirements to the EditorAPI

	Fulfillment of the constraints of the GlossarySchema in the GlossarySystem
	Test Case Glossaries
	Bibliography

